Report from the 2nd NDN Community Meeting (NDNcomm 2015)

November 10th, 2015 by kc

The report for the Second NDN Community Meeting (NDNcomm 2015) is available online now. The meeting, held at UCLA in Los Angeles, California on September 28-29, 2015, provided a platform for attendees from 63 institutions across 13 countries to exchange recent NDN research and development results, to debate existing and proposed functionality in NDN forwarding, routing, and security, and to provide feedback to the NDN architecture design evolution.

[The workshop was partially supported by the National Science Foundation CNS-1345286, CNS-1345318, and CNS-1457074. We thank the NDNcomm Program Committee members for their effort of putting together an excellent program. We thank all participants for their insights and feedback at the workshop.]

CAIDA releases the August 2015 Internet Topology Data Kit (ITDK 2015-08)

November 6th, 2015 by Josh Polterock

Nothing feels better than publishing fresh data for the research community, especially when fresh brings new features. Today, CAIDA released the August 2015 version of our popular Internet Topology Data Kit (ITDK) that includes topologies for both IPv4 and IPv6. CAIDA’s ITDK provides researchers with data that describes connectivity and routing observations gathered from a large cross-section of the global Internet. This dataset enables the study of the topology of the IPv4 and IPv6 Internet at the router-level with inferences for assignments of routers to Autonomous Systems (AS). The August 2015 release of the ITDK includes two related IPv4 router-level topologies; an IPv6 router-level topology; assignments of routers to ASes; geographic locations of each router; and Domain Name Service (DNS) lookups of all observed IP addresses.

We produce the ITDKs from active measurements conducted on our Archipelago (Ark) measurement infrastructure. This release made use of 94 Ark monitors located in 36 countries to produce the IPv4 topologies and 26 monitors located in 15 countries for the IPv6 topology.

CAIDA restricts access to recent ITDKs less than two years old. CAIDA provides unrestricted public access to ITDKs older than two years.

For complete details about the ITDK collection process, data files and formats, data availability, and more, please see Macroscopic Internet Topology Data Kit (ITDK).

Recent papers on policy

October 21st, 2015 by kc

We recently posted two papers on policy that are worth highlighting:

Anchoring policy development around stable points: an approach to regulating the co-evolving ICT ecosystem, published in Telecommunications Policy, Aug 2015.

Abstract:

The daunting pace of innovation in the information and communications technology (ICT) landscape, a landscape of technology and business structure, is a well-known but under-appreciated reality. In contrast, the rate of policy and regulatory innovation is much slower, partly due to its inherently more deliberative character. We describe this disparity in terms of the natural rates of change in different parts of the ecosystem, and examine why it has impeded attempts to impose effective regulation on the telecommunications industry. We explain why a recent movement to reduce this disparity by increasing the pace of regulation – adaptive regulation – faces five obstacles that may hinder its feasibility in the ICT ecosystem. As a means to achieve more sustainable regulatory frameworks for ICT industries, we introduce an approach based on finding stable points in the system architecture. We explore the origin and role of these stable points in a rapidly evolving system, and argue that they can provide a means to support development of policies, including adaptive regulation approaches, that are more likely to survive the rapid pace of evolution in technology.

Full paper available on the CAIDA website.
Accompanying slides are also available.

Adding Enhanced Services to the Internet: Lessons from History
Presented at the Telecommunications Policy Research Conference (TPRC), Sep 2015.

Abstract:

We revisit the last 35 years of history related to the design and specification of Quality of Service (QoS) on the Internet, in hopes of offering some clarity to the current debates around service differentiation. We describe the continual failure to get QoS capabilities deployed on the public Internet, including the technical challenges of the 1980s and 1990s, the market-oriented (business) challenges of the 1990s and 2000s, and recent regulatory challenges. Our historical perspective draws on, among other things, our own work from the 1990s that offered proposals for supporting enhanced services using the Internet Protocol (IP) suite, and our attempts to engage both industry and policymakers in understanding the dynamics of the Internet ecosystem. In short, the engineering community successfully developed protocols and mechanisms to implement enhanced services (QoS), and a few individual service providers have deployed them internally or in trusted two-party scenarios. The long-standing failure has been to deploy this capability across the public Internet.

We reflect on lessons learned from the history of this failure, the resulting tensions and risks, and their implications for the future of Internet infrastructure regulation. First, the continued failure of QoS over the last three decades derives from political and economic (business) obstacles as well as technical obstacles. The competitive nature of the industry, and a long history of anti-trust regulation (at least in the U.S.) conflicts with the need for competing providers to agree on protocols that require sharing operational data with each other to parameterize and verify committed service qualities. Second, QoS technology can yield benefits as well as harms, so policymaking should focus on harms rather than mechanisms. To assure the benefit to consumers, regulators may need to require transparency about the state of congestion and provisioning on networks using such mechanisms. Third, using QoE as the basis for any regulation will require research, tools and capabilities to measure, quantify, and characterize QoE, and developing metrics of service quality that better reflect our understanding of QoS and QoE for a range of applications. Finally, profound shifts in interconnection arrangements suggest a reshaping of the debate over QoS on the public Internet. Some access networks are interconnecting their private IP-based network platforms to support enhanced services, and using this interconnected platform to vertically integrate infrastructure and applications. Access networks are also connecting directly to large content providers to minimize the risk of performance impairments. These changes trigger new regulatory concerns over the fate of the public Internet, including capital investment incentives and gaps across different bodies of law.

Barriers to the deployment of scalable interprovider QoS may be unsurmountable, but since any Internet of the future will face them, it is worth developing a systematic understanding to the challenge of enhanced services, and documenting successes and failures over the history of the Internet as carefully as possible.

Full paper available on the CAIDA website.

DHS S&T DDoS Defense PI Meeting

August 31st, 2015 by kc

Earlier this month, Marina and I went to our first Principal Investigators meeting for a new DHS program on distributed denial of service defense (DDoS Defense), lead by DHS S&T Cybersecurity Division Program Manager Dan Massey. Dan is one of Doug Maughan’s team, and he seems to have picked up Doug’s impressive talent for running effective meetings. I presented these slides on our new spoofer project, a collaboration with Dr. Matthew Luckie, now a senior lecturer at U. Waikato, and Rob Beverly at NPS.

CAIDA’s Annual Report for 2014

July 22nd, 2015 by kc

[Executive Summary from our annual report for 2014:]

This annual report covers CAIDA’s activities in 2014, summarizing highlights from our research, infrastructure, data-sharing and outreach activities. Our research projects span Internet topology, routing, traffic, security and stability, future Internet architecture, economics and policy. Our infrastructure activities support measurement-based Internet studies, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem.
Read the rest of this entry »

Panel on Cyberwarfare and Cyberattacks at 9th Circuit Judicial Conference

July 20th, 2015 by kc

I had the honor of contributing to a panel on “Cyberwarfare and cyberattacks: protecting ourselves within existing limitations” at this year’s 9th Circuit Judicial Conference. The panel moderator was Hon. Thomas M. Hardiman, and the other panelists were Professor Peter Cowhey, of UCSD’s School of Global Policy and Strategy, and Professor and Lt. Col. Shane R. Reeves of West Point Academy. Lt. Col. Reeves gave a brief primer on the framework of the Law of Armed Conflict, distinguished an act of cyberwar from a cyberattack, and described the implications for political and legal constraints on governmental and private sector responses. Professor Cowhey followed with a perspective on how economic forces also constrain cybersecurity preparedness and response, drawing comparisons with other industries for which the cost of security technology is perceived to exceed its benefit by those who must invest in its deployment. I used a visualization of an Internet-wide cybersecurity event to illustrate technical, economic, and legal dimensions of the ecosystem that render the fundamental vulnerabilities of today’s Internet infrastructure so persistent and pernicious. A few people said I talked too fast for them to understand all the points I was trying to make, so I thought I should post the notes I used during my panel remarks. (My remarks borrowed heavily from Dan Geer’s two essays: Cybersecurity and National Policy (2010), and his more recent Cybersecurity as Realpolitik (video), both of which I highly recommend.) After explaining the basic concept of a botnet, I showed a video derived from CAIDA’s analysis of a botnet scanning the entire IPv4 address space (discovered and comprehensively analyzed by Alberto Dainotti and Alistair King). I gave a (too) quick rundown of the technological, economic, and legal circumstances of the Internet ecosystem that facilitate the deployment of botnets and other threats to networked critical infrastructure.
Read the rest of this entry »

What’s in a Ranking? comparing Dyn’s Baker’s Dozen and CAIDA’s AS Rank

July 2nd, 2015 by Bradley Huffaker

The Internet infrastructure is composed of thousands of independent networks (Autonomous Systems, or ASes) that engage in typically voluntary bilateral interconnection (“peering”) agreements to provide reachability to each other. Underlying these peering relationships, are business relationships between networks, although whether and how much money ASes exchange when they interconnect is not generally published. Some of these business relationships are relatively easy to infer with a high degree of confidence using a basic economic assumption that commercial providers do not give away traffic transit services (i.e., route announcements) for free.

For several years CAIDA has used publicly available BGP data to infer business relationships among ASes and, consequently, rank Autonomous Systems based on a measure of their influence in the global routing system, specifically the size of their customer cone. (An AS’s customer cone is the set of ASes, IPv4 prefixes, or IPv4 addresses that the AS can reach via its customers, i.e., by crossing only customer links.) The methodology behind our ranking is described in detail in our IMC2013 paper (“AS Relationships, Customer Cones, and Validation”). By default, CAIDA’s AS Rank sorts by the number of other ASes in each AS’s customer cone (an AS granularity), but the AS Rank web interface also supports sorting by the number of IPv4 prefixes or IPv4 addresses observed in each AS’s customer cone (which the web interface calls prefix or IP address granularities).

Other organizations also provide rankings of ASes; the most well-known is Dyn’s IP Transit Intelligence AS ranking. Since both CAIDA’s and Dyn’s rankings aim to use a metric that reflects some notion of “predominant role in the global Internet routing system”, we have received several inquiries on how our ranking methodology and results differ from theirs. In this essay we try to answer this question to the best of our ability, acknowledging that their methodology is proprietary and we do not know exactly what they are doing beyond what they have released publicly. This 2013 MENOG presentation (Dyn bought the Renesys company in 2014) states that their ranking is based on quantity of transited IP space, so the closest possible comparison to what we currently do would be to compare their ranking with our IP-address-based customer cone ranking (which is not currently our default). For this exercise we will compare CAIDA’s 1st January 2015 AS ranking by customer cone with the chronologically last value on Dyn’s 2014 Baker’s Dozen, which is based on data observed around the same date.

Dyn’s web site provides the following image showing their rankings throughout 2014: Dyn-Bakers-Dozen-2014-All

In order to compare not only the computed ranking, but the values of the metrics being ranked (i.e., transited IPv4 space vs. number of addresses in customer cone), we create a mapping between the two spaces. Dyn does not put numbers on their y-axis, and they plot only the top 13 ranked ASes, so we do not know the range of y-values represented. In order to make the comparison possible, we will (make a leap of faith and) assume that the top thirteen ranked ASes for each metric cover roughly the same rank of values. (We caution that this assumption may be unjustified and are trying to validate it with Dyn.) So we map the top ranked ASes in Dyn (Level 3 AS3356), to the top ranked AS in CAIDA (also Level 3 AS3356), and map the 13th-ranked AS in Dyn, (Hurricane AS6939), to the 13th ranked AS in CAIDA, (Korea Telecom AS4766). These upper and lower thresholds result in the following mapping between the transited IPv4 space and number of IPv4 addresses in customer cone:

ASdyn_i.dyn_y = ASdyn_i.transit_ip – ASdyn_13.transit_ip + AScaida_13.number_addresses
AScaida_0.num_addresses – AScaida_13.num_addresses

Dyn vs CAIDA's AS Ranking
An AS’s rank is based on the number of ASes with a value (of the ranked metric) greater than the given AS. CAIDA’s 8th, 11th, and 13th ranked ASes are gray because we do not know their Dyn ranking.
as-prefix-percentage Hilbert map visulization shows utilization of IPv4 address space, rendered in two dimensions using as space-filling continous fractal Hilbert curve of order 12. Each pixel in the full resolution image represents a /24 block; red indicates used blocks, green unassigned blocks and blue RFC special blocks. Routed unused blocks are grey and unrouted assigned black

Although their order changes, the top nine ASes are the same in both rankings. Three of Dyn’s top-ranked ASes — China Telecom (AS4134), Beyond (AS3491), and Level 3 (AS3549) — are not in CAIDA’s top 14 ranked ASes; instead CAIDA’s top 14 includes AT&T (AS7018), Deutsche Telecom (AS3320), and Korea Telecom (AS4766). Some of this discrepancy can be explained by Dyn’s curation of the data, including “dealing with anomalies, discounting pre-CIDR allocations, ignoring short-lived announcements, counting remaining prefixes (non-linearly) based on size (/8 – /24 only), etc“. We assume these heuristics aim to make the number of transited addresses a closer approximation to the amount of transited traffic, which Dyn suggests is the more interesting ranking (in the same 2013 MENOG presentation).

We agree with Dyn that the number of IP addresses is not representative of traffic, and have always emphasized that we are not in a position to rank ASes by traffic transited. Not only is there huge variation in traffic to/from different IP addresses (e.g., home user versus popular web servers), but many announced IP addresses are not even assigned to any hosts. In an October 2013 study, CAIDA researchers found that of the 10.4M addresses announced in that month, only 5.3M (51%) were observed sending traffic (these “used” address blocks are shown as red in the Hilbert map on the right). This observation suggests another arguably more meaningful (but computationally expensive) method to rank ASes: normalizing by the amount of observably actively used address space.

July, August, and September 2013



Since we do not yet have census information for January 2015, we use July, August, and September 2013 usage data to compare Dyn’s 2013 ranking with CAIDA’s AS ranking weighted by the number of observably used /24 IPv4 prefixes in the customer cone. (A /24 is defined as “used” if the census observed it as in use.)

The results of this ranking by “observably used IPv4 address /24 blocks”-based customer cone (i.e., the number of apparently used /24 blocks in an AS’s customer cone) look more similar to the Dyn rankings, consistent with the fact that this method of calculating customer cones accounts for some of the effect Dyn captures by discounting pre-CIDR blocks, which are less likely to be fully utilized.

Dyn vs CAIDA's AS Ranking
An AS’s ranking is based on the number of ASes with a value greater than the given AS. The CAIDA’s 8th, 12th, and 13th ranked AS are colored gray to indicate that we do not have a known their Dyn ranking.
 2015   2013 
 dyn   address   address   used   dyn 
 2015 

dyn 1.00 0.82 0.83 0.86 0.82
address 0.82 1.00 0.74 0.66 0.49
 2013 

address 0.83 0.74 1.00 0.96 0.86
used 0.86 0.66 0.96 1.00 0.90
dyn 0.82 0.49 0.86 0.90 1.00

We computed the Pearson correlation coefficient between the results of the two ranking methods. A value of 1 shows perfect correlation or that the two systems have identical rankings. A 0 means there is no correlation or that the two rankings are completely different. Outside the comparison with themselves, which by definition produces 1.00, the two most similar rankings are Dyn’s 2013 transit addresses and CAIDA’s 2013 used /24s with a correlation of 0.90.

This approach improves the correlation between Dyn’s and CAIDA’s ranking (e.g., the Pearson correlation coefficient increases from 0.82 to 0.90, see Table), but it amplifies the dominance of the top-ranked AS (Level 3 AS3356) for CAIDA’s census-derived customer cone ranking.

If we correlate how the rankings have changed over the last two years — which we cannot do for the census-based ranking since we only have 2013 data — we find that Dyn’s ranking showed greater consistency (a correlation between the 2013 and 2015 rankings of 0.82 compared with CAIDA’s 0.74), perhaps due to their data curation process.

In summary, CAIDA’s IPv4 address-based customer cone and Dyn’s transited IPv4 address space roughly agree on the top ASes, although their relative weighting diverges.


Comments on Cybersecurity Research and Development Strategic Plan

July 1st, 2015 by kc

An excerpt from a comment that David Clark and I wrote in response to Request for Information (RFI)-Federal Cybersecurity R&D Strategic Plan, posted by the National Science Foundation on 4/27/2015.

The RFI asks “What innovative, transformational technologies have the potential to enhance the security, reliability, resiliency, and trustworthiness of the digital infrastructure, and to protect consumer privacy?

We believe that it would be beneficial to reframe and broaden the scope of this question. The security problems that we face today are not new, and do not persist because of a lack of a technical breakthrough. Rather, they arise in large part in the larger context within which the technology sits, a space defined by misaligned economic incentives that exacerbate coordination problems, lack of clear leadership, regulatory and legal barriers, and the intrinsic complications of a globally connected ecosystem with radically distributed ownership of constituent parts of the infrastructure. Worse, although the public and private sectors have both made enormous investments in cybersecurity technologies over the last decade, we lack relevant data that can characterize the nature and extent of specific cybersecurity problems, or assess the effectiveness of technological or other measures intended to address them.

We first examine two inherently disconnected views of cybersecurity, the correct-operation view and the harm view. These two views do not always align. Attacks on specific components, while disrupting correct operation, may not map to a specific and quantifiable harm. Classes of harms do not always derive from a specific attack on a component; there may be many stages of attack activity that result in harm. Technologists tend to think about assuring correct operation while users, businesses, and policy makers tend to think about preventing classes of harms. Discussions of public policy including research and development funding strategies must bridge this gap.

We then provide two case studies to illustrate our point, and emphasize the importance of developing ways to measure the return on federal investment in cybersecurity R&D.

Full comment:
http://www.caida.org/publications/papers/2015/comments_cybersecurity_research_development/

Background on authors: David Clark (MIT Computer Science and Artificial Intelligence Laboratory) has led network architecture and security research efforts for almost 30 years, and has recently turned his attention toward non-technical (including policy) obstacles to progress in cybersecurity through a new effort at MIT funded by the Hewlett Foundation. kc claffy (UC San Diego’s Center for Applied Internet Data Analysis (CAIDA)) leads Internet research and data analysis efforts aimed at informing network science, architecture, security, and public policy. CAIDA is funded by the U.S. National Science Foundation, Department of Homeland Security’s Cybersecurity Division, and CAIDA members. This comment reflects the views of its authors and not necessarily the agencies sponsoring their research.

Named Data Networking Next Phase (NDN-NP) Annual Report

June 30th, 2015 by kc

The Named Data Networking project recently published the NDN-NP annual report covering activities from May 2014 through April 2015.

V. Jacobson, J. Burke, L. Zhang, B. Zhang, K. Claffy, C. Papadopoulos, T. Abdelzaher, L. Wang, J. Halderman, and P. Crowley, “Named Data Networking Next Phase (NDN-NP) Project May 2014 – April 2015 Annual Report”, Tech. rep., Jun 2015.

This report catalogs a wide range of our accomplishments during the first year of the “NDN Next Phase (NDN-NP)” project. This phase of the project is environment-driven, in that we are focusing on deploying and evaluating the NDN architecture in two specific environments: building automation management systems and mobile health, together with a cluster of multimedia collaboration tools.

CAIDA takes over stewardship of Spoofer Project infrastructure

May 28th, 2015 by Matthew Luckie

Originally started by Rob Beverly while a graduate student at MIT, the Spoofer project attempts to measure the Internet’s susceptibility to spoofed source address IP packets. From Rob’s original project web page (now moved to CAIDA, see below):

Malicious users capitalize on the ability to “spoof” source IP addresses for anonymity, indirection, targeted attacks and security circumvention. Compromised hosts on networks that permit IP spoofing enable a wide variety of attacks.

The project never had dedicated funding, but Rob believed that empirical data on how many networks permitted spoofing was important, so he kept the web site alive. In collaboration with him, we submitted a proposal to improve the measurement and analysis capabilities to inform one of the most important challenges in cybersecurity today: improving network hygiene to reduce the threat of the longest standing vector of attack on Internet infrastructure.
In addition to enabling us to provide estimates of how many networks allow packets with forged source addresses to leave their networks, we can use measurements from this infrastructure, in combination with other sources of data, to analyze the geographic, economic, and governance characteristics of networks that allow spoofing, versus those that do not, as well as trends over time of this network security hygiene policy.

This month, we celebrate a transition point in this project: in collaboration with Rob, we migrated the Spoofer software services to a new server on the machine room floor at the San Diego Supercomputer Center at UCSD, and, more relevant to users, we have released new clients for Microsoft Windows, Mac OS X, and Linux. We encourage users and operators to download and run the new clients to help measure the Internet’s susceptibility to spoofed source-addressed IP packets. Feedback is greatly appreciated as we expand functionality and hopefully footprint of this critical infrastructure security analysis project.

This research and infrastructure development effort is supported by an award from the Department of Homeland Security, Science and Technology Directorate.