Archive for the 'Geolocation' Category

CAIDA’s Annual Report for 2017

Tuesday, May 29th, 2018 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2017, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology, routing, security, economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem. The executive summary is excerpted below:

We lead with the two most exciting pieces of news. First, CAIDA celebrated its 20th anniversary this year! Perhaps no one, least of all us, thought we could keep it going this long, but each year seems to get better! Second, CAIDA director kc experienced the greatest honor of her career this year when she received the Internet Society’s Postel Service Award!

On to this year’s annual report, which summarizes CAIDA’s activities for 2017, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology mapping, security and stability measurement studies (of outages, interconnection performance, and configuration vulnerabilities), economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem.

Internet Performance Measurement. This year we leveraged our years of investment in topology measurement and analytic techniques to advance research on performance, reliability, resilience, security, and economic weaknesses of critical Internet infrastructure. We continued our study of interconnection congestion, which requires maintaining significant software, hardware, and data processing infrastructure for years to observe, calibrate and analyze trends. We also undertook several research efforts in how to identify and characterize different types of congestion and associated effects on quality of experience using a variety of our own and other (e.g., M-Lab) data.

Monitoring Global Internet Security and Stability.
Our research accomplishments in Internet security and stability monitoring in 2017 included: (1) characterizing the Denial-of-Service ecosystems, and attempts to mitigate DoS attacks via BGP blackholing; (2) continued support for the Spoofer project, including supporting the existing Spoofer measurement platform as well as developing and applying new methods to expand visibility of compliance with source address validation best practices; (3) demonstrating the continued prevalence of that long-standing TCP vulnerabilities on the global Internet; (4) new methods to identify router outages and quantify their impact on Internet resiliency; (5) a new project to quantify country-level vulnerabilities to connectivity disruptions and manipulations.

Future Internet Research. We continued to engage in long-term studies of IPv6 evolution, including adaptation of IPv4 technology to IPv4 address scarcity (e.g., CGN), and detecting Carrier-Grade NAT (CGN) in U.S. ISP networks, as well as an updated longitudinal study of IPv6 deployment. We pared down our participation in the NDN project while we wait for some NSF-funded code development to complete. We hope we will be able to use this software platform to evaluate NDN’s use in secure data sharing scenarios.

Economics and Policy. We undertook two studies related to the political and economic forces influencing interconnection in Africa, as well as several other studies on the economic modeling of peering that we are determined to publish in 2018. We also held a lively workshop on Internet economics where we continued the discussion on what a future Internet regulatory framework should look like.

Infrastructure Operations. We continued to operate active and passive measurement infrastructure with visibility into global Internet behavior, and associated software tools that facilitate network research and security vulnerability analysis for the community. We also maintained data analytics platforms for Internet Outage Detection and Analysis (IODA) and BGP data analytics (BGPStream). We are excited about a new project we started late in 2017 (PANDA) to support integration of several of our existing measurement and data analytics platforms.

Outreach. As always, we engaged in a variety of outreach activities, including maintaining web sites, posting blog entries, publishing 14 peer-reviewed papers, 2 technical reports, 2 workshop reports, making 31 presentations, and organizing 5 workshops (and hositng 4 of them). We also received several honors from the community: an IRTF Applied Networking Research Prize for our BGPStream work in March, and kc received the Postel Service Award in November!

This report summarizes the status of our activities; details about our research are available in papers, presentations, our blog, and interactive resources on our web sites. We also provide listings and links to software tools and data sets shared, and statistics reflecting their usage. Finally, we offer a “CAIDA in numbers” section: statistics on our performance, financial reporting, and supporting resources, including visiting scholars and students, and all funding sources.

Getting the next decade off to a hopefully auspicious start, CAIDA’s new program plan for 2018-2022 is available at www.caida.org/home/about/progplan/progplan2018/. Please feel free to send comments or questions to info at caida dot org.

For the full 2017 annual report, see http://www.caida.org/home/about/annualreports/2017/

Geolocation Terminology: Vantage Points, Landmarks, and Targets

Thursday, November 17th, 2016 by Bradley Huffaker

While reviewing a recent paper, it occurred to me there is a pretty serious nomenclature inconsistency across Internet measurement research papers that talk about geolocation. Specifically, the term landmark is not well-defined. Some literature uses the term landmark to refer to measurement infrastructure (e.g., nodes that source active measurements) in specific known geographic locations [Maziku2013,Komosny2015]. In other literature the same term refers to locations with known Internet identifiers — such as IP addresses — against which one collects calibration measurements [Arif2010,Wang2011,Hu2012,Eriksson2012,Chen2015].

In pursuit of clarity in our field, we recommend the following terms and definitions:

  • A Vantage Point (VP) is a measurement infrastructure node with a known geographic location.
  • A Landmark is a responsive Internet identifier with a known location to which the VP will launch a measurement that can serve to calibrate other measurements to potentially unknown geographic locations.
  • A Target is an Internet identifier whose location will be inferred from a given method. Depending on the type of identifier and inference methodology, this may not be a single well defined location. Typically, some targets have known geographic locations (ground truth), which researchers can use to evaluate the accuracy of their geolocation methodology.
  • A Location is a geographic place that geolocation techniques attempt to infer for a given target. Examples include cities and ISP Points of Presences (PoPs).

Not all papers need to use all terms. Below we depict a simple constraint-based geolocation algorithm to show how we understand these terms in practice.

A simple constraint-based geolocation algorithm.

A simple constraint-based geolocation algorithm.

[Potential useful resource, although not actively maintained: CAIDA’s Geolocation Bibliography]