Archive for the 'Commentaries' Category

Understanding the deployment of public recursive resolvers

Monday, May 6th, 2024 by Matthew Luckie

This is the third in a series of essays (two earlier blog posts [1, 2]) about CAIDA’s new effort to reduce the barrier to performing a variety of Internet measurements.

We were recently asked about running Trufflehunter, which infers the usage properties of rare domain names on the Internet by cache snooping public recursive resolvers, on Ark. The basic idea of Trufflehunter is to provide a lower bound of the use of a domain name by sampling caches of large recursive resolvers.  One component of Trufflehunter is to identify the anycast instances that would answer a given vantage point’s DNS queries.   Trufflehunter uses a series of TXT queries to obtain the anycast instance of a given public recursive resolver, and considers four large public recursive resolvers: Cloudflare (, Google (, Quad9 (, and OpenDNS (  The original paper describes the queries in section 4.1, which we summarize below, highlighting the interesting parts of each response with blue color.

Cloudflare returns an airport code representing the anycast deployment location used by the VP:
$ host -c ch -t txt id.server
id.server descriptive text "AKL"

Google returns an IP address representing the anycast deployment used by the VP, which can be mapped to an anycast deployment location with a second query:
$ host -t txt descriptive text "" descriptive text "edns0-client-subnet <redacted>/24"

$ host -t txt descriptive text " icn " ... " syd " " cbf " ...

Quad9 returns the hostname representing the resolver that provides the answer:
$ host -c ch -t txt id.server
id.server descriptive text ""

and finally, OpenDNS returns a bunch of information in a debugging query, which includes the server that handles the query:
$ host -t txt descriptive text "server r2004.syd" descriptive text "flags 20040020 0 70 400180000000000000000007950800000000000000" descriptive text "originid 0" descriptive text "orgflags 2000000" descriptive text "actype 0" descriptive text "source <redacted>:42845"

Each of these queries requires a slightly different approach to extract the location of the anycast instance.  Our suggestion is for experimenters to use our newly created python library, which provides programmatic access to measurement capabilities of Ark VPs (described in two earlier blog posts [1, 2]).  The code for querying the recursive resolvers from all VPs is straight forward, and is shown below.  First, on lines 15-27, we get the Google mapping, so that we can translate the address returned to an anycast location.  This query requires TCP to complete, as the entry is larger than can fit in a UDP payload (the response is 9332 bytes at the time of writing this blog).  This query is synchronous (we wait for the answer before continuing, because the google queries that follow depend on the mapping) and is issued using a randomly selected Ark VP.  Then, on lines 29-38, we issue the four queries to each of the anycasted recursive resolvers from each VP.  These queries are asynchronous; we receive the answers as each Ark VP obtains a response.  On lines 40-82, we process the responses, storing the results in a multi-dimensional python dictionary, which associates each Ark VPs with their anycast recursive resolver location, as well as the RTT between asking the query and obtaining the response.  Finally, on lines 84-96, we dump the results out in a nicely formatted table that allows us to spot interesting patterns.

01 import argparse
02 import datetime
03 import ipaddress
04 import random
05 import re
06 from scamper import ScamperCtrl
08 def _main():
09   parser = argparse.ArgumentParser(description='get public recursive locs')
10   parser.add_argument('sockets')
11   args = parser.parse_args()
13   ctrl = ScamperCtrl(remote_dir=args.sockets)
15   # pick an ark VP at random to issue the query that gets the mapping
16   # of google recursive IP to location
17   goog_nets = {}
18   obj = ctrl.do_dns('',
19     inst=random.choice(ctrl.instances()),
20     qtype='txt', tcp=True, sync=True)
21   if obj is None or len(obj.ans_txts()) == 0:
22     print("could not get google mapping")
23     return
24   for rr in obj.ans_txts():
25     for txt in rr.txt:
26       net, loc = txt.split()
27       goog_nets[ipaddress.ip_network(net)] = loc
29   # issue the magic queries to get the instance that answers the query
30   for inst in ctrl.instances():
31     ctrl.do_dns('', server='', qtype='txt',
32       attempts=2, wait_timeout=2, inst=inst)
33     ctrl.do_dns('id.server', server='', qclass='ch', qtype='txt',
34       attempts=2, wait_timeout=2, inst=inst)
35     ctrl.do_dns('id.server', server='', qclass='ch', qtype='txt',
36       attempts=2, wait_timeout=2, inst=inst)
37     ctrl.do_dns('', server='', qtype='txt',
38       attempts=2, wait_timeout=2, inst=inst)
40   # collect the data
41   data = {}
42   for obj in ctrl.responses(timeout=datetime.timedelta(seconds=10)):
43     vp =
44     if vp not in data:
45       data[vp] = {}
46     dst = str(obj.dst)
47     if dst in data[vp]:
48       continue
49     data[vp][dst] = {}
50     data[vp][dst]['rtt'] = obj.rtt
52     for rr in obj.ans_txts():
53       for txt in rr.txt:
54         if dst == '':
55           # google reports an IPv4 address that represents
56           # the site that answers the query. we then map
57           # that address to a location using the mapping
58           # returned by the locations TCP query.
59           try:
60             addr = ipaddress.ip_address(txt)
61           except ValueError:
62             continue
63           for net, loc in goog_nets.items():
64             if addr in net:
65               data[vp][dst]['loc'] = loc
66               break
67         elif dst == '':
68           # Cloudflare replies with a single TXT record
69           # containing an airport code
70           data[vp][dst]['loc'] = txt
71         elif dst == '':
72           # Quad9 reports a hostname with an embedded
73           # airport code.
74           match ="\\.(.+?)\\.rrdns\\.pch\\.net", txt)
75           if match:
76             data[vp][dst]['loc'] =
77         elif dst == '':
78           # opendns reports multiple TXT records; we want the one
79           # that looks like "server r2005.syd"
80           match ="^server .+\\.(.+?)$", txt)
81           if match:
82             data[vp][dst]['loc'] =
84   # format the output
85   print("{:15} {:>13} {:>13} {:>13} {:>13}".format(
86     "# vp", "google", "couldflare", "quad9", "opendns"))
87   for vp, recs in sorted(data.items()):
88     line = f"{vp:15}"
89     for rec in ('', '', '', ''):
90       cell = ""
91       if 'loc' in recs[rec]:
92         rtt = recs[rec]['rtt']
93         loc = recs[rec]['loc']
94         cell = f"{loc} {rtt.total_seconds()*1000:5.1f}"
95       line += f" {cell:>13}"
96     print(line)
98 if __name__ == "__main__":
99    _main()

The code runs quickly — no longer than 10 seconds (if one of the VPs is slow to report back), illustrating the capabilities of the Ark platform.

The output of running this program is shown below.  We have highlighted cells where the RTT was at least 50ms larger than the minimum RTT to any of the large recursive resolvers for the given VP.  These cells identify low-hanging fruit for operators, who could examine BGP routing policies with the goal of selecting better alternative paths.

# vp             google   couldflare         quad9      opendns
abz-uk.ark    lhr  24.4    LHR  16.5     lhr  16.9    lon  16.4
abz2-uk.ark   lhr  23.4    MAN   8.7     man   8.4   man1   8.5
acc-gh.ark    jnb 246.7    JNB 167.3     acc   0.5   cpt1 236.6
adl-au.ark    mel  28.1    ADL   5.5     syd  22.6   mel1  14.0
aep-ar.ark    scl  29.4    EZE   8.0   qaep2   4.6   sao1  34.0
aep2-ar.ark   scl  38.2    EZE   6.6   qaep2   5.7   sao1  42.5
akl-nz.ark    syd  26.9    AKL   2.6    akl2   4.0    syd  26.1
akl2-nz.ark   syd  29.2    AKL   4.9    akl2   4.0    syd  26.9
ams-gc.ark    grq   5.0    FRA   6.3     ams   0.8    ams   1.1
ams3-nl.ark   grq   6.0    AMS   2.1     ams   1.3    ams   1.9
ams5-nl.ark   grq   5.1    AMS   1.2     ams   1.9    ams   1.7
ams7-nl.ark   grq   6.0    AMS   2.4     ams   1.8    ams   2.3
ams8-nl.ark   grq  14.8    AMS  11.5     fra  17.7    ams  11.8
arn-se.ark    lpp   9.7    ARN   2.0     arn   0.8   cph1  10.5
asu-py.ark    scl  55.4    EZE  22.6     asu   0.8   sao1  57.0
atl2-us.ark   atl   9.8    DFW  23.6   qiad3  20.5   atl1   4.6
atl3-us.ark   atl  22.7    ATL  13.1     atl  17.0   atl1  19.7
aus-us.ark    dfw  80.7    DFW  56.6     dfw  46.6    dfw  17.6
avv-au.ark    mel 142.3    MEL   9.4     syd  22.6   mel1   8.5
bcn-es.ark    mad  38.0    BCN  13.3     bcn   0.5   mad1   9.8
bdl-us.ark    iad  13.3    EWR   5.0     lga   4.9    ash  10.6
bed-us.ark    iad  30.6    BOS  15.2     bos  13.5   bos1  19.8
beg-rs.ark    mil  62.5    BEG   1.2     beg   0.7   otp1  12.9
bfi-us.ark    dls  11.7    SEA   3.8   xsjc1  96.9    sea  10.5
bjl-gm.ark    bru  87.5    CDG  71.1     bjl   6.7   cdg1  73.4
bna-us.ark    atl  11.4    BNA   9.0     atl   9.5   atl1   9.3
bna2-us.ark   cbf  25.5    ORD  19.7     ord  12.8    chi  12.8
bos6-us.ark   iad  17.6    BOS   5.6   qiad3  15.5   bos1   5.7
bre-de.ark    grq  21.4    TXL  23.1     ber  17.2    ams  23.7
btr-us.ark    dfw  20.3    ORD  29.5     dfw  13.2    dfw  11.4
bwi2-us.ark   iad  12.7    IAD   4.4   qiad3   3.6   rst1   3.1
cdg-fr.ark    mil  24.9    MRS   1.5     mrs   1.0   mrs1  11.6
cdg3-fr.ark   bru   8.5    CDG   3.9     ams  13.7   cdg1   5.5
cgs-us.ark    iad   4.5    EWR   7.9     iad   2.2    ash   2.1
cjj-kr.ark    hkg  63.4                qhnd2  70.7    hkg  47.3
cld4-us.ark   lax  22.7    LAX  15.7     bur 104.1    lax  14.3
cld5-us.ark   lax  52.6    LAX  20.7     bur 103.1    lax  21.9
cld6-us.ark   lax  14.5    LAX   5.2   qlax1   7.0    lax   6.0
cos-us.ark    cbf  22.9    DEN   7.3     ord  36.0   den1  12.6
dar-tz.ark    jnb 224.6    NBO  14.0     dar   1.0    jnb  51.1
dar2-tz.ark   jnb 223.0    DAR   0.9     dar   0.9    jnb  48.0
dmk-th.ark    sin  32.2    SIN  28.0     bkk   2.4   nrt2  95.0
dtw2-us.ark   cbf  18.1    DTW   4.6     dtw   4.2    chi  10.7
dub-ie.ark    lhr  18.9    DUB   1.2     dub   0.7   dub1   0.7
dub2-ie.ark   lhr  18.7    DUB   1.8     dub   1.1   dub1   1.2
dub3-ie.ark   lhr  35.5    ZRH  45.6     dub  16.9   dub1  11.6
ens-nl.ark    grq   9.3    AMS   5.2     ams   4.0    ams   4.9
eug-us.ark    dls  15.7    SJC  18.3     sea   6.5    sea   6.5
fra-gc.ark    fra   9.1    FRA   1.1     fra   1.1    fra   1.1
gig-br.ark    gru 125.2    GIG   2.2   qrio1   1.4   rio1   1.1
gva-ch.ark                 ZRH   5.3     gva   1.0    fra  10.8
gye-ec.ark    chs 128.7    MIA  66.8   quio2  10.7    mia  77.1
ham-de.ark    grq  19.7    HAM   8.5     ber  11.0    fra  17.7
her2-gr.ark   mil  64.9                  ath   7.5   mil1  32.6
hkg4-cn.ark   tpe  13.6    HKG   1.0   qhkg3   4.9    hkg   9.5
hkg5-cn.ark   hkg  16.3    HKG   2.6   qhkg3   3.9    hkg   3.6
hlz2-nz.ark   syd  40.9    AKL  16.9     akl  13.8    syd  38.2
hnd-jp.ark    nrt   6.5    NRT   3.4   qhnd2  80.3    nrt   3.6
hnl-us.ark    dls  82.3    HNL   1.1     sea  75.2    sea  75.3
iev-ua.ark    waw  45.5    FRA  29.8   qwaw2  14.3   wrw1  14.9
igx2-us.ark   iad  16.1    EWR  16.9   qiad3  11.5   atl1  11.8
ind-us.ark    atl  25.1    IND   1.1     ord   8.5   atl1  11.0
ixc-in.ark    del  78.8    DEL   0.8   qsin1   0.7   mum2   0.7
jfk-us.ark    iad   9.6    EWR   1.5     lga   0.6    nyc   1.0
kgl-rw.ark    jnb 231.6    NBO  15.0     kgl   3.3    jnb  73.6
ktm-np.ark    del  98.6    DEL  30.4     ktm   7.6   mum1  94.4
las-us.ark    lax  15.5    LAX   8.4     pao  15.9    lax   8.2
lax3-us.ark   lax  10.5    LAX   3.0     bur   2.0    lax   2.0
lcy2-uk.ark   lhr  11.5    MAN   7.4     lhr  11.2    lon   2.2
lej-de.ark    fra  21.2    FRA   9.7     fra  12.5    fra   9.6
lex-us.ark    iad  17.9    IAD  15.7     iad  17.3   atl1  25.9
lgw-uk.ark    lhr  31.3    LHR  24.2     lhr  24.6    lon  23.6
lhe2-pk.ark   dia 195.0    KHI  35.0   qsin4 113.1    sin 130.6
lis-pt.ark    mad  33.0    LIS   4.5     lis   3.9   mad1  18.0
lke2-us.ark   dls  21.7    SEA  21.4     sea  15.1    sea  11.7
lun-zm.ark    jnb 189.9    JNB  32.2     jnb  23.3    jnb  23.3
lwc-us.ark    tul  18.0    MCI   1.4   xsjc1 106.3    dfw  10.4
lwc2-us.ark   dfw  24.4    DFW  15.7   qlax1  46.9    dfw  16.5
mdw-us.ark    cbf  25.7    ORD   7.0     ord   3.4    chi   4.4
med2-co.ark   mrn  96.4    MIA  50.7   qbog1  22.7    mia  48.9
mhg-de.ark    fra  30.7    FRA  19.1     fra  21.4    fra  18.4
mia-gc.ark    mrn  19.7    MIA   1.1     mia   1.0    mia   0.6
mnl-ph.ark    hkg  87.9    MNL   1.8   qsin1  50.8    hkg  75.8
mnz-us.ark    iad  13.4    IAD   5.8   qiad3   5.2   rst1   4.0
mru-mu.ark    jnb 206.1    JNB  43.1     mru   1.0    jnb  43.3
msy-us.ark    dfw  34.4    DFW  21.9   qlax1  55.2    dfw  23.0
mty-mx.ark    tul  44.1    MFE   4.5   qiad3  39.6    dfw  16.7
muc-de.ark    fra  30.3    FRA   9.1     fra   8.8    fra   8.9
muc3-de.ark   zrh  25.9    MUC   6.1     fra  11.0    fra  12.2
nap2-it.ark   mil  37.8    MXP  19.8     fra  38.0   mil1  15.2
nbo-ke.ark    jnb 220.5    NBO   2.4     nbo   2.2    jnb  60.7
nic-cy.ark    mil  61.3    LCA   1.0     mrs  35.2   mrs1  35.4
nrn-nl.ark    grq   8.6    AMS   5.5     ams   2.9    ams   3.1
nrt-jp.ark    nrt   4.8    NRT   1.2     hkg 101.9   nrt2   1.0
nrt3-jp.ark   nrt   6.5    NRT   3.5     pao 101.7   nrt2   3.5
oak5-us.ark   lax  19.3    SJC   5.9    sjc0   4.4    pao   4.4
okc-us.ark    dfw   9.6    MCI   9.6     dal   8.2    dfw   7.3
ord-us.ark    cbf  13.0    ORD   2.9     iad  19.0    chi   1.6
ory4-fr.ark   bru   6.5    CDG   2.0     cdg   1.4   cdg1   1.7
ory6-fr.ark   bru   6.4    LHR   8.8     lhr   8.4    lon   8.6
ory7-fr.ark   bru   7.7    CDG   4.0     cdg   5.0   cdg1   4.0
ory8-fr.ark   bru   6.3    CDG   2.0     lhr  25.7    lon   9.4
osl-no.ark    lpp  46.5    OSL   0.9     osl  25.8   sto1   9.0
pbh2-bt.ark   bom 105.2    MAA  92.0     pbh   1.8    sin  91.7
per-au.ark    syd  48.9    PER   2.0     per   1.2    syd  45.3
per2-au.ark   syd 140.0    PER   2.5     per   1.5    syd  44.9
phl-us.ark    iad  15.9                  iad  14.0   rst1  15.9
pna-es.ark    mad  33.9    BCN  13.5     bcn  13.3   mad1  19.3
prg-cz.ark    fra  16.9    PRG   1.1   qbts1   5.9   prg1   0.6
prg2-cz.ark   fra  29.8    PRG   1.7   qfra3  14.0   prg1   1.5
pry-za.ark    jnb 167.3    JNB   1.2     jnb   0.6   cpt1  18.4
puw-ru.ark    lpp  18.2    DME   1.5     beg  67.1    fra  34.3
pvu-us.ark    lax  25.2    SLC   3.8     slc   2.7    sea  18.4
rdu-us.ark    iad   9.5    IAD   8.1     iad   7.7    ash   8.6
rdu2-us.ark   iad  11.3    IAD   8.1     iad   8.5    ash   8.6
rdu3-us.ark   iad  27.5    IAD  18.6     iad  18.4   atl1  23.8
rkv-is.ark    lhr  49.0    KEF   2.0     kef   0.8   dub1  23.0
san-us.ark    lax  10.4    LAX   4.7     bur  87.2    lax   3.1
san2-us.ark   lax  39.0    LAX   6.5   qlax1   7.5    lax   5.6
san4-us.ark   lax  26.6    LAX  20.2     bur 106.8    lax  17.3
sao-br.ark    gru 117.3    GRU   2.5   qgru1   1.3   rio1   9.6
scq-es.ark    mad  31.7    MAD  11.0     mad  10.8   mad1  11.3
sea3-us.ark   dls  10.1    SEA   3.9     pao  24.6    sea   3.0
sin-gc.ark    sin   4.0    SIN   1.5   qsin1  93.5    sin   1.1
sin-sg.ark    sin   3.2    SIN   2.3   qsin1  12.2    sin   0.7
sjc2-us.ark   lax  15.2    SJC   1.4    sjc0   0.5    pao   2.1
sjj-ba.ark    waw  71.1    BUD  57.5     vie 213.3   mil1  89.4
sjo-cr.ark    chs  63.0    SJO   2.2     mia  51.8    mia  78.6
snn-ie.ark    lhr  20.4    DUB   4.4     dub   3.9   dub1   3.9
sql-us.ark    lax  19.6    SJC   2.2     pao   1.2    pao   0.9
stx-vi.ark    chs  38.3    MIA  26.4     mia  25.5    mia  25.1
svo2-ru.ark   lpp  22.4    DME   5.8     fra  41.1    fra  38.2
swu-kr.ark    hkg  77.6    ICN   6.5   qsin1  76.9   nrt2  38.5
syd3-au.ark   syd   4.8    SYD   0.9     syd   1.0    syd   0.5
tij-mx.ark    lax  15.8    LAX   6.6   qlax1   6.6    lax   5.6
tlv-il.ark    mil  80.2    MRS  43.6     tlv   2.0   mil1  50.5
tlv3-il.ark   mil  64.2    TLV   2.1     tlv   2.1   tlv1   3.0
tnr-mg.ark                 JNB 215.7                  jnb 199.1
tpe-tw.ark    tpe  10.3    TPE   5.2     tpe   3.1    sin  74.4
vdp-dk.ark    lpp  21.9    CPH   5.6     arn  13.4   cph1   5.4
vie-at.ark    fra  22.5    FRA  13.8     vie   2.1   prg1   6.5
waw-pl.ark    waw  20.1    HAM  31.3   qwaw2   1.3   wrw1   0.9
wbu-us.ark    cbf  13.4    DEN   2.7     den   1.8   den1   1.5
wlg2-nz.ark   syd  35.3    AKL  17.0    akl2  16.5    syd  32.4
ygk-ca.ark    yyz  29.5    YYZ  16.7     iad  35.5    yyz  16.1
yyc-ca.ark    dls  26.5    YYC   4.6     sea  21.8    yvr  16.7
zrh-ch.ark    zrh  14.5    ZRH   1.1    zrh2   0.6   mil1   8.1
zrh2-ch.ark   zrh  16.2    ZRH   1.1    zrh2   1.0    fra   6.8
zrh4-ch.ark   zrh  15.8    ZRH   1.5    zrh2   0.8   mil1   9.0


ITDK 2024-02

Tuesday, April 23rd, 2024 by Matthew Luckie

CAIDA has released the 2024-02 Internet Topology Data Kit (ITDK), the 24th ITDK in a series published over the past 14 years. In the year since the 2023-03 release, CAIDA has expanded its Ark platform with both hardware and software vantage points (VPs), and re-architected the ITDK probing software. We have been busy modernizing the software to enable us to collect ITDK snapshots more regularly, as well as annotate the router-level Internet topology graph with more features.

For IPv4, the ITDK probing software is based primarily around two reliable alias resolution techniques. The first, MIDAR, probes for IPID behavior that suggests that responses from different IP addresses had IPID values derived from a single counter, and thus the addresses are assigned to the same router. This inference is challenging because of the sheer number of router addresses observed in macroscopic Internet topologies, and the IPID value is held in a 16-bit field, requiring sophisticated probing techniques to identify distinct counters.  The second, iffinder, probes for common source IP addresses in responses to probes sent to different target IP addresses.

In the past few months, we have replaced the MIDAR and iffinder probing component on the Ark VPs to use alias resolution primitives present in scamper (specifically, the midarest, midardisc, and radargun primitives). We used the recently released scamper python module, and 902 lines of python, which executes on a single machine at CAIDA to coordinate the probing from many VPs.

The following table provides statistics illustrating the growth of the ITDK over the past year, driven by the expansion of Ark VPs. Overall, we increased the number of Ark VPs providing topology data from 93 to 142, the number of addresses probed from 2.6 to 3.6M, doubled the number of VPs that we use for alias resolution probing, and found aliases for 50% more addresses than a year ago.  Note that we use the term “node” to distinguish between our router inferences, and the actual routers themselves.  By definition all routers have at least two IP addresses; our “nodes with at least two IPs” are the subset of routers we were able to observe with that property.

2023-03 2024-02
Number of addresses probed: 2.64M 3.58M
Number of ark VPs: 93 142
Number of countries: 37 52
Alias resolution:
Number of ark VPs for MIDAR: 55 101
Number of ark VPs for iffinder: 46 101
Nodes with at least two IPs: 75,660 107,976
Addresses in nodes with at least two IPs:  284,479 425,964

For 2024-02, we also evaluated the gains provided by SNMPv3 probing, following a paper published in IMC 2021 that showed many routers return a unique SNMP Engine ID in response to a SNMPv3 request; the basic idea is that different IP addresses returning the same SNMPv3 Engine ID are likely aliases.  Of the 3.58M addresses we probed, 672K returned an SNMPv3 response.  We inferred that IP addresses belonged to the same router when they return the same SNMP Engine ID, the size of the engine ID was at least 4 bytes, the number of engine boots was the same, and the router uptime was the same; we did not use the other filters in section 4.4 of the IMC paper.  This inferred 47,770 nodes with at least two IPs, many of which were shared with existing nodes found with MIDAR + iffinder. In total, when we combined MIDAR, iffinder, and SNMP probing, we obtained a graph with 124,857 nodes with at least two IPs, covering 515,524 addresses. We are including both the MIDAR + iffinder and MIDAR + iffinder + SNMP graphs in ITDK 2024-02.

Our ITDK also includes an IPv6 graph derived from speedtrap, which infers that IPv6 addresses belong to the same router if the IPID values in fragmented IPv6 responses appear to be derived from a single counter, and a graph derived from speedtrap and SNMP. For IPv6, the gains provided by SNMP are more significant, as the effectiveness of the IPv6 IPID as an alias inference vector wanes.  Of the 929K IPv6 addresses we probed, 68K returned an SNMPv3 response.

2023-03 2024-02
Number of addresses probed: 592K 929K
Number of ark VPs: 36 54
Number of countries: 18 25
Speedtrap output:
Nodes with at least two IPs: 4,945 4,129
Addresses in nodes with at least two IPs: 12,638 10,886
Speedtrap + SNMP output:
Nodes with at least two IPs: 8,935
Addresses in nodes with at least two IPs:  – 35,164

Beyond the alias resolution, the nodes are also annotated with their bdrmapIT-inferred operator (expressed as an ASN) as well as an inferred geolocation. We look up the PTR records of all router IP addresses with zdns, following CNAMEs where they exist, and provide these names as part of the ITDK.  For router geolocation, we used a combination of DNS-based heuristics, IXP geolocation (routers connected to an IXP are likely located at that IXP), and Maxmind GeoLite2.

We inferred DNS-based geolocation heuristics using RTT measurements from 148 Ark VPs in 52 countries to constrain Hoiho, which automatically infers naming conventions in PTR records as regular expressions, and covered 819 different suffixes (e.g.,  ^.+\.([a-z]+)\d+\.level3\.net$ and ^.+\.([a-z]{3})\d+\.[a-z\d]+\.cogentco\.com$ extract geolocation hints in hostnames for Level3 and Cogent in the above figure). There is no dominant source of geohint observed in these naming conventions; 443 (54.1%) embedded IATA airport codes (e.g. IAD, WAS for the Washington D.C. area), 310 (37.9%) embedded place names (e.g. Ashburn for Ashburn, VA, US), 87 (10.6%) embedded the first six characters of a CLLI code (e.g. ASBNVA for Ashburn), and 12 (1.4%) embedded locodes (e.g. USQAS for Ashburn, VA, US). Interestingly, the operators that used CLLI and locodes had conventions that were more congruent with observed RTT values than operators that used IATA codes or place names.  For the nodes in the ITDK, hoiho provided a geolocation inference for 127K, IXP provided a geolocation inference for 14K, and maxmind covered the remainder.  The rules we inferred are usable via CAIDA’s Hoiho API.

ITDKs older than one year are publicly available, and ITDK 2024-02 is available to researchers and CAIDA members, after completing a simple form for access.

Acknowledgment: We are grateful to all of the Ark hosting sites, MaxMind’s freely available geolocation database, and academic research access to Iconectiv’s CLLI database to support this work.

Developing active Internet measurement software locally to run on Ark

Wednesday, January 24th, 2024 by Matthew Luckie

In the first part of our blog series, we introduced our brand-new python module for scamper, the packet-prober underpinning much of Ark’s ongoing measurements. One aspect that we highlighted was the ability for potential users of Ark to develop their code locally, before running it on the Ark platform. When I develop measurement applications, I use a couple of local Raspberry Pis and my own workstation to get the code correct, and then copy the code to the CAIDA system to run the experiment using available Ark vantage points. The goal of this blog article is to describe different ways to locally develop your measurement experiment code.

Example #1: Starting small with one scamper process.

The easiest way to begin is with one scamper process running on the same system where you develop your python code. With scamper installed (we recommend that you use a package listed on the scamper website), start a scamper process, and make it available for measurement commands on a Unix domain socket. For example, you might run scamper as follows:

$ scamper -U /tmp/scamper -p 100

This will create a Unix domain socket to drive scamper at /tmp/scamper, and tell scamper that it can probe at up to 100 packets/second. You can adjust these parameters to what is appropriate locally.

You can then develop and debug your measurement code in Python. To use this scamper process, your Python code might begin as follows:

01 from scamper import ScamperCtrl
03 # use the scamper process available at /tmp/scamper
04 ctrl = ScamperCtrl(unix="/tmp/scamper")
06 # do a simple ping to and print the outcome
07 o = ctrl.do_ping("")
08 if o.min_rtt is not None:
09   print(f"{o.min_rtt.total_seconds()*1000):.1f} ms")
10 else:
11   print("no reply")

Example #2: Coordinating measurements among VPs.

Once you are comfortable using the python module with a single local scamper instance, you might want to test your code with multiple scamper instances, each representing a distinct vantage point. The scamper software includes the sc_remoted interface to support that. sc_remoted has features for authenticating endpoints with TLS, but you might choose to initially operate endpoints without the complexity of TLS.

sc_remoted listens on a port for inbound scamper connections, and makes Unix domain sockets — one for each VP — available in a nominated directory. The best idea is to create an empty directory for these sockets. You might run sc_remoted as follows:

$ mkdir -p /path/to/remote-sockets
$ sc_remoted -U /path/to/remote-sockets -P 50265

The first command creates the directory, because sc_remoted will not create that directory for you. The second command starts sc_remoted listening on port 50265 for incoming scamper connections, and will place Unix domain sockets in /path/to/remote-sockets as they arrive.  Note, we use /path/to as a placeholder to the actual path in your local file system that is appropriate for your environment; you might put these sockets in a directory somewhere in your home directory, for example.

Then, on the systems that you want to act as vantage points, the following command:

$ scamper -p 100 -R -M

will (1) start a scamper process, (2) tell it that it can probe at up to 100 packets-per-second, (3) connect it to the specified IP address and port to receive measurement commands from, and (4) tell it to identify itself as “” to the remote controller. If you go into /path/to/remote-sockets, you might see the following:

$ cd /path/to/remote-sockets
$ ls -l
total 0
srwx------ 1 mjl mjl 0 Jan 22 16:57

This socket represents the scamper process you just started. The filename begins with, the parameter that you gave to scamper to identify itself. After the dash is the IP address and port number that the remote controller observed the remote system coming from. You can connect as many additional scamper instances as you like, and you will see them listed in the directory individually. You should name each differently with something meaningful to you (, bar.baz, etc) so that you can identify them on the system on which you’re writing your python code.

The python code we wrote in Example #1 above might be modified as follows:

01 import sys
02 from scamper import ScamperCtrl
04 if len(sys.argv) != 2:
05   print("specify path to unix domain socket")
06   sys.exit(-1)
08 # use the remote scamper process available at the specified location
09 ctrl = ScamperCtrl(remote=sys.argv[1])
11 # do a simple ping to and print the outcome
12 o = ctrl.do_ping("")
13 if o.min_rtt is not None:
14   print(f"{o.min_rtt.total_seconds()*1000):.1f} ms")
15 else:
16   print("no reply")

And run as:

$ python /path/to/remote-sockets/\:12369

If you have multiple remote-sockets in the directory, you can add them individually, or use all sockets in the directory. For example:

01 import sys
02 from datetime import timedelta
03 from scamper import ScamperCtrl
05 if len(sys.argv) != 3:
06   print("usage: $dir $ip")
07   sys.exit(-1)
09 ctrl = ScamperCtrl(remote_dir=sys.argv[1])
10 for i in ctrl.instances():
11   ctrl.do_ping(sys.argv[2], inst=i)
13 min_rtt = None
14 min_vp = None
15 for o in ctrl.responses(timeout=timedelta(seconds=10)):
16   if o.min_rtt is not None and (min_rtt is None or min_rtt > o.min_rtt):
17     min_rtt = o.min_rtt
18     min_vp = o.inst
20 if min_rtt is not None:
21   print(f"{} {(min_rtt.total_seconds()*1000):.1f} ms")
22 else:
23   print(f"no responses for {sys.argv[2]}")

and run this command:

$ python /path/to/remote-sockets

We encourage you to reach out via email if you have questions about using the module. In the first instance, you can email ark-info at

CAIDA contributions to ACM’s Internet Measurement Conference (IMC) 2023

Tuesday, November 14th, 2023 by CAIDA Webmaster

ACM’s Internet Measurement Conference (IMC) is an annual highly selective venue for the presentation of Internet measurement and analysis research. The average acceptance rate for papers is around 25%. CAIDA researchers co-authored three papers and one poster that was be presented at the IMC conference in Montreal, Quebec on October 26 – 28, 2023. We link to these publications below.

On the Importance of Being an AS: An Approach to Country-Level AS Rankings
Bradley Huffaker, Alexander Marder, Romain Fontugne, kc claffy. ACM Internet Measurement Conference (IMC), 2023.
Recent geopolitical events demonstrate that control of Internet infrastructure in a region is critical to economic activity and defense against armed conflict. This geopolitical importance necessitates novel empirical techniques to assess which countries remain susceptible to degraded or severed Internet connectivity because they rely heavily on networks based in other nation states. Currently, two preeminent BGP-based methods exist to identify influential or market-dominant networks on a global scale-network-level customer cone size and path hegemony–but these metrics fail to capture regional or national differences.

We adapt the two global metrics to capture country-specific differences by restricting the input data for a country-specific metric to destination prefixes in that country. Although conceptually simple, our study required tackling methodological challenges common to most Internet measurement research today, such as geolocation, incomplete data, vantage point access, and lack of ground truth. Restricting public routing data to individual countries requires substantial downsampling compared to global analysis, and we analyze the impact of downsampling on the robustness and stability of our country-specific metrics. As a measure of validation, we apply our country-specific metrics to case studies of Australia, Japan, Russia, Taiwan, and the United States, illuminating aspects of concentration and interdependence in telecommunications markets. To support reproducibility, we will share our code, inferences, and data sets with other researchers.

IRRegularities in the Internet Routing Registry
Ben Du, Gautam Akiwate, Cecilia Testart, Alex C. Snoeren, kc claffy, Katherine Izhikevich, Sumanth Rao. ACM Internet Measurement Conference (IMC), 2023.
The Internet Routing Registry (IRR) is a set of distributed databases used by networks to register routing policy information and to validate messages received in the Border Gateway Protocol (BGP). First deployed in the 1990s, the IRR remains the most widely used database for routing security purposes, despite the existence of more recent and more secure alternatives. Yet, the IRR lacks a strict validation standard and the limited coordination across diferent database providers can lead to inaccuracies. Moreover, it has been reported that attackers have begun to register false records in the IRR to bypass operators’ defenses when launching attacks on the Internet routing system, such as BGP hijacks. In this paper, we provide a longitudinal analysis of the IRR over the span of 1.5 years. We develop a workflow to identify irregular IRR records that contain conflicting information compared to different routing data sources. We identify 34,199 irregular route objects out of 1,542,724 route objects from November 2021 to May 2023 in the largest IRR database and find 6,373 to be potentially suspicious.

Coarse-grained Inference of BGP Community Intent
Thomas Krenc, Alexander Marder, Matthew Luckie, kc claffy. ACM Internet Measurement Conference (IMC), 2023.
BGP communities allow operators to influence routing decisions made by other networks (action communities) and to annotate their network’s routing information with metadata such as where each route was learned or the relationship the network has with their neighbor (information communities). BGP communities also help researchers understand complex Internet routing behaviors. However, there is no standard convention for how operators assign community values, and significant efforts to scalably infer community meanings have ignored this high-level classification. We discovered that doing so comes at a significant cost in accuracy, of both inference and validation. To advance this narrow but powerful direction in Internet infrastructure research, we design and validate an algorithm to execute this first fundamental step: inferring whether a BGP community is action or information. We applied our method to 78,480 community values observed in public BGP data for May 2023. Validating our inferences (24,376 action and 54,104 informational communities) against available ground truth (6,259 communities) we find that our method classified 96.5% correctly. We found that the precision of a state-of-the-art location community inference method increased from 68.2% to 94.8% with our classifications. We publicly share our code, dictionaries, inferences, and datasets to enable the community to benefit from them.

CAIDA also contributed to one extended abstract:

Empirically Testing the PacketLab Model
Tzu-Bin Yan, Zesen Zhang, Bradley Huffaker, Ricky K. P. Mok, kc claffy, Kirill Levchenko. ACM Internet Measurement Conference (IMC) Poster, 2023.
PacketLab is a recently proposed model for accessing remote vantage points. The core design is for the vantage points to export low-level network operations that measurement researchers could rely on to construct more complex measurements. Motivating the model is the assumption that such an approach can overcome persistent challenges such as the operational cost and security concerns of vantage point sharing that researchers face in launching distributed active Internet measurement experiments. However, the limitations imposed by the core design merit a deeper analysis of the applicability of such model to real-world measurements of interest. We undertook this analysis based on a survey of recent Internet measurement studies, followed by an empirical comparison of PacketLab-based versus native implementations of common measurement methods. We showed that for several canonical measurement types common in past studies, PacketLab yielded similar results to native versions of the same measurements. Our results suggest that PacketLab could help reproduce or extend around 16.4% (28 out of 171) of all surveyed studies and accommodate a variety of measurements from latency, throughput, network path, to non-timing data.

A summary of the EU’s Digital Services Act and the role of academic research

Tuesday, August 29th, 2023 by David Clark and kc claffy

A new working paper from the CAIDA GMI3S project summarizes key aspects of the European Union’s Digital Services Act (DSA), providing insight into how the EU plans to regulate large online platforms and services.

The DSA is intended to create a safer and more transparent online environment for consumers by imposing new obligations and accountability on companies like Meta, Google, Apple, and Amazon. The regulations target issues like illegal content, disinformation, political manipulation, and harmful algorithms. Systemic societal risks, like disinformation and political influence campaigns, are a major focus of the regulations.

Some key takeaways from the DSA overview:

  • Very large online platforms and search engines face the most stringent requirements, like risk assessment audits, transparency reporting, and independent oversight.
  • The rules apply to any company offering services within the EU market, regardless of where they are based. This prevents tech giants from circumventing the law.
  • The Act establishes clear legal definitions and penalties around illegal content like hate speech, terrorist propaganda, and child sexual abuse material.
  • Covered platforms must assess and mitigate these and other systemic threats. They are expected to assess how the design and implementation of their service, and manipulation and use of it, including violations of terms of service, contribute to such risks.
  • Providers serving advertising must clearly identify its sponsor (who paid for it on and on whose behalf), and the main parameters used to its target audience, and where applicable, how to change them.
  • Providers of recommendation systems must provide the main parameters including the most important criteria determining what is recommended, and the reasons for the importance of these criteria.
  • A critical component is requiring platforms to provide access to data for vetted independent researchers studying systemic risks and harms. This enables evidence-based analysis of problems and solutions.

The DSA signals that the EU is taking a hard line on enforcing accountability and responsible practices for dominant online platforms that have largely operated without oversight. The success of the regulations will depend on effective coordination and enforcement across the EU’s member states. However the Act provides a potential model for balancing innovation and consumer protection in the digital marketplace. Consumers may benefit from transparency and accountability of manipulative algorithms, more control over data, and protections against online harms.

Importantly, the data access mandate signals the EU’s commitment to leveraging academic expertise in shaping a healthier digital ecosystem. Researchers will be able to investigate systemic issues like algorithmic bias, political polarization, misinformation dynamics, and the mental health impacts of social media.

This DSA working paper provides valuable context on this ambitious attempt to regulate the digital economy.

To read further:

CAIDA’s 2022 Annual Report

Monday, July 10th, 2023 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2022 in the areas of research, infrastructure, data collection and analysis. The executive summary is excerpted below:

Hoiho API (Holistic Orthography of Internet Hostname Observations)

Monday, February 13th, 2023 by Bradley Huffaker

In December 2021, CAIDA published a method and system to automatically learn rules that extract geographic annotations from router hostnames. This is a challenging problem, because operators use different conventions and different dictionaries when they annotate router hostnames. For example, in the following figure, operators have used IATA codes (“iad”, “was”), a CLLI prefix (“asbnva”), a UN/LOCODE (“usqas”), and even city names (“ashburn”, “washington”) to refer to routers in approximately the same location — Ashburn, VA, US. Note that “ash” (router #4) is an IATA code for Nashua, NH, US, that the operators of and used to label routers in Ashburn, VA, US. Some operators also encoded the country (“us”) and state (“va”).

Our system, Hoiho, released as open-source as part of scamper, uses CAIDA’s Macroscopic Internet Topology Data Kit (ITDK) and observed round trip times to infer regular expressions that extract these apparent geolocation hints from hostnames. The ITDK contains a large dataset of routers with annotated hostnames, which we used as input to Hoiho for it infer rules (encoded as regular expressions) that extract these annotations. CAIDA has released these inferred rulesets in recent ITDKs.

Today, CAIDA is launching an API ( and web front end ( which returns extracted geographic locations from a user-provided list of DNS names. The API uses the rules that CAIDA infers with each ITDK. For embedded IATA, UN/LOCODE, and city names, the API returns the city name and a lat/long representing the location. For embedded CLLI codes, the API returns the CLLI code; please contact iconectiv for a dictionary that maps CLLI codes to locations.

Try the API out, and let us know if you find it useful!

[HOIHO] Luckie, M., Huffaker, B., Marder, A., Bischof, Z., Fletcher, M., and claffy, k., 2021. “Learning to Extract Geographic Information from Internet Router Hostnames.” ACM SIGCOMM Conference on emerging Networking EXperiments and Technologies (CoNEXT),

New CAIDA Prefix-to-AS Mapping Data Set

Monday, November 14th, 2022 by Bradley Huffaker

Since May 9th, 2005, CAIDA has produced a data set that maps IPv4 prefixes (and later also IPv6 prefixes) to the AS (Autonomous System) originating that prefix into the global BGP routing system, as observed via a single BGP data collector of the Route Views data collection system. We have called this data set “RouteViews Prefix to AS”. We used CAIDA’s straighten_rv script to filter the RIB (routing information base file used as input data. We will discontinue this data set on December 31st, 2022 an replace it with a new more complete data set that we call CAIDA’s Prefix-to-AS data set.

CAIDA will use the BGPStream software package (and in particular the bgpview library) to include data from all available BGP collectors from both of the primary global publicly available collection systems: Route Views and RIPE NCC Routing Information Service. We will backfill Prefix-to-AS data to 2000. As part of this transition, CAIDA will no longer use straighten_rv to preprocess AS paths. We will create two files: an annotated file with all the data observed in BGP, and a simple file that filters out data of no interest to many researchers as described below.

Annotated files. The annotated file will include information about the stability and visibility of prefixes by different peers and collectors. Individuals who wish to produce a more refined mapping can fairly easily filter this data. The table below compares the older “Routeviews2” (a single Route Views collector) and the new annotated CAIDA Prefix-to-AS dataset (all collectors from both RIPE RIS and Route Views) for 1 June 2022. Most (99.6%) ASes and (87.2%) prefixes appeared in both datasets. Note that multiple ASNs announced the prefix, we exclude it since it covers the entire IPv4 address space.

ASN filtered Routeviews2 only Routeviews+RIPE both total
Multiorigin/set 128 4.10% 1552 49.73% 1441 46.17% 3121
public 0 0.00% 295 0.40% 73294 99.60% 73589
reserved X 0 0.00% 1379 88.97% 171 11.03% 1550
Prefix filtered Routeviews2 only Routeviews+RIPE both total
larger then /8 X 0 0.00% 1 100.00% 0 0.00% 1
private X 0 0.00% 504 84.85% 90 15.15% 594
public 0 0.00% 138498 12.81% 942469 87.19% 1080967

Simple files. The simple file will exclude very large prefixes, e.g., with mask lengths < 8, private addresses (RFC 1918), or prefixes announced exclusively by reserved ASNs (Special-Purpose ASN). The resulting simple prefix-to-ASN mapping covers 99.7% of the address space captured by the annotated file. In the table below (also reflecting 1 June 2022), 0.94% of prefixes and 0.42% of addresses had an additional origin AS that was not also observed in the Routeviews2-only dataset. This reflects the expanded visibility of more collectors and peer. 4.92% of CAIDA’s prefixes and 1.82% of addresses were not covered by Routeviews2-only prefix2as. Overall the combined data set provides visibility of 5.86% of prefixes and 2.24% of addresses not covered by routeviews2-only.

CAIDA’s Prefix to AS “simple” (99.7% of addresses observed in annotated files)

ASN type prefixes addressses
source agreement Routeviews2
number group % all % number group % all %
both different multiorigin multiorigin 626 11.43% 0.11% 1241088 9.65% 0.04%
public multiorigin 4816 87.95% 0.82% 11442617 88.93% 0.37%
set multiorigin 34 0.62% 0.01% 183039 1.42% 0.01%
5476 100.00% 0.94% 12866744 100.00% 0.42%
both same multiorigin multiorigin 9869 1.79% 1.69% 12609229 0.42% 0.41%
public public 540032 98.20% 92.45% 2988739528 99.58% 97.35%
set set 8 0.00% 0.00% 9216 0.00% 0.00%
549909 100.00% 94.14% 3001357973 100.00% 97.76%
Routeviews+RIPE N/A multiorigin 1884 6.55% 0.32% 908601 1.63% 0.03%
public 26856 93.44% 4.60% 54919321 98.37% 1.79%
set 2 0.01% 0.00% 2816 0.01% 0.00%
28742 100.00% 4.92% 55830738 100.00% 1.82%

You can find the new CAIDA Prefix-to-AS Mapping Data Set here.

CAIDA contributions to ACM’s Internet Measurement Conference (IMC) 2022

Tuesday, October 18th, 2022 by Elena Yulaeva

ACM’s Internet Measurement Conference (IMC) is an annual highly selective venue for the presentation of Internet measurement and analysis research. The average acceptance rate for papers is around 25%. CAIDA researchers co-authored five papers and 3 posters that will be presented at this conference in Nice, France on October 25 – 27, 2022. We link to these publications below.

Investigating the impact of DDoS attacks on DNS infrastructure. Rafaele Sommese, KC Claffy, Roland van Rijswijk-Deij, Arnab Chattopadhyay, Alberto Dainotti, Anna Sperotto, and Mattijs Jonker. 2022.  This paper describes a newly developed scalable method to map DDoS attacks targeting or affecting DNS infrastructure. The measurements reveal evidence that millions of domains experienced  DDoS attacks during the recent 17-month observation window. Most attacks did not observably harm DNS performance, but in some cases, a 100-fold increase in DNS resolution time was observed. This research corroborates the value of known best practices to improve DNS resilience to attacks, including the use of anycast and topological redundancy in nameserver infrastructure.

Mind Your MANRS: Measuring the MANRS Ecosystem. Ben Du, Cecilia Testart, Romain Fontugne, Gautam Akiwate, Alex C. Snoeren, and kc claffy. 2022. Mutually Agreed on Norms on Routing Security (MANRS) is an industry-led initiative to improve Internet routing security by encouraging participating networks to implement a set of recommended actions. The goal of the paper is to evaluate the current state of the MANRS initiative in terms of its participants, their routing behavior, and its impact on the broader routing ecosystem, and discuss potential improvements. The findings confirm that MANRS participants are more likely to follow best practices than other similar networks on the Internet. However, within MANRS, not all networks take the MANRS mandate with the same rigor. This study demonstrates the need to continually assess the conformance of members for the prosperity of the MANRS initiative, and the challenges in automating such conformance checks.

Retroactive Identification of Targeted DNS Infrastructure HijackingGautam Akiwate, Rafaele Sommese, Mattijs Jonker, Zakir Durumeric, kc Claffy, Geofrey M. Voelker, and Stefan Savage. 2022. DNS infrastructure tampering attacks are particularly challenging to detect because they can be very short-lived, bypass the protections of TLS and DNSSEC, and are imperceptible to users. Identifying them retroactively is further complicated by the lack of fine-grained Internet-scale forensic data. This paper is the first attempt to make progress toward this latter goal. Combining a range of longitudinal data from Internet-wide scans, passive DNS records, and Certificate Transparency logs, we have constructed a methodology for identifying potential victims of sophisticated DNS infrastructure hijacking and have used it to identify a range of victims (primarily government agencies). The authors analyze possible best practices in terms of their measurability by third parties, including a review of DNS measurement studies and available data sets.

Stop, DROP, and ROA: Effectiveness of Defenses through the lens of DROPLeo Oliver, Gautam Akiwate, Matthew Luckie, Ben Du, and kc claffy. 2022. Malicious use of the Internet address space has been a persistent threat for decades. Multiple approaches to prevent and detect address space abuse include the use of blocklists and the validation against databases of address ownership such as the Internet Routing Registry (IRR) databases and the Resource Public Key Infrastructure (RPKI). The authors undertook a study of the effectiveness of these routing defenses through the lens of one of the most respected blocklists on the Internet: Spamhaus’ Don’t Route Or Peer (DROP) list. The authors show that attackers are subverting multiple defenses against malicious use of address space, including creating fraudulent Internet Routing Registry records for prefixes shortly before using them. Other attackers disguised their activities by announcing routes with spoofed origin ASes consistent with historic route announcements. The authors quantify the substantial and actively-exploited attack surface in unrouted address space, which warrants reconsideration of RPKI eligibility restrictions by RIRs, and reconsideration of AS0 policies by both operators and RIRs.

Where .ru? Assessing the Impact of Conflict on Russian Domain Infrastructure Mattijs Jonker, Gautam Akiwate, Antonia Afnito, kc claffy, Alessio Botta, Geofrey M. Voelker, Roland van Rijswijk-Deij, and Stefan Savage. 2022. The hostilities in Ukraine have driven unprecedented forces, both from third-party countries and in Russia, to create economic barriers. In the Internet, these manifest both as internal pressures on Russian sites to (re-)patriate the infrastructure they depend on (e.g., naming and hosting) and external pressures arising from Western providers disassociating from some or all Russian customers. This paper describes longitudinal changes in the makeup of naming, hosting, and certificate issuance for domains in the Russian Federation due to the war in Ukraine.


CAIDa also contributed to three extended abstracts:

“Observable KINDNS: Validating DNS Hygiene.” Sommese, Raffaele, Mattijs Jonker, kc claffy. ACM Internet Measurement Conference (IMC) Poster, 2022.

“PacketLab – Tools Alpha Release and Demo. Yan, Tzu-Bin, Yuxuan Chen, Anthea Chen, Zesen Zhang, Bradley Huffaker, Ricky K. P. Mok, Kirill Levchenko, kc claffy. ACM Internet Measurement Conference (IMC) Poster, 2022.

“A Scalable Network Event Detection Framework for Darknet Traffic.”Gao, Max, Ricky K. P. Mok, kc claffy. ACM Internet Measurement Conference (IMC) Poster, 2022.

CAIDA’s 2021 Annual Report

Monday, May 30th, 2022 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2021 in the areas of research, infrastructure, data collection and analysis. Our research projects span: Internet cartography and performance; security, stability, and resilience studies; economics; and policy. Our infrastructure, software development, and data sharing activities support measurement-based Internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem.
The executive summary is excerpted below: