Archive for August, 2014

Under the Telescope: Time Warner Cable Internet Outage

Friday, August 29th, 2014 by Vasco Asturiano

In the early hours of August 27th 2014, Time Warner Cable (TWC) suffered a major Internet outage, which started around 9:30am and lasted until 11:00am UTC (4:30am-6:00am EST). According to Time Warner, this disconnect was caused by an issue with its Internet backbone during a routine network maintenance procedure.

A few sources have documented the outage based on BGP and/or active measurements, including Renesys and RIPE NCC. Here we present a view from passive traffic measurement, specifically from the UCSD Network Telescope, which continuously listens for Internet Background Radiation (IBR) traffic. IBR is a constantly changing mix of traffic caused by benign misconfigurations, bugs, malicious activity, scanning, responses to spoofed traffic (backscatter), etc.  In order to extract a signal usable for our inferences, we count the number of unique source IP addresses (in IBR observed from a certain AS or geographical area) that pass a series of filters. Our filters try to remove (i) spoofed traffic, (ii) backscatter, and (iii) ports/protocols that generate significant noise.

Most of TWC’s Autonomous Systems seem to have been affected during the time of the reported outage. Our indicators from the telescope show a total absence of traffic from TWC’s ASes, indicating a complete network outage.

Figure 1: Number of unique IBR source IPs (after filtering) observed per minute for the TWC ASes

Figure 1 shows the number of unique source IPs originated by TWC ASes per minute, as observed by the network telescope; we plot only TWC ASes from which there was any IBR traffic observed just before and after the event. For reference, these ASes are: AS7843, AS10796, AS11351, AS11426, AS11427, AS11955, AS12271 and AS20001.

TWC is a large Internet access provider in the United States, and this IBR signal can also reveal insight into the impact of this outage across the country. Figure 2 shows the same metric as Figure 1, but for source IPs across the entire country, indicating a drop of about 12% in the number of (filtered) IBR sources, which suggests that during the incident, a significant fraction of the US population lost Internet access.

Figure 2: Number of unique IBR source IPs (after filtering) observed in the US 

Drilling down to a regional level shows which US states seem to have suffered a larger relative drop in traffic.

Figure 3: Decrease ratio of unique IBR source IPs per US state 

Figure 3 compares the number of IBR sources observed in the 5 minute-interval just before the incident (9:25-9:30UTC) to the 5-minute interval after it (9:30-9:35UTC). The yellow to red color gradient represents the ratio at which a certain state’s IBR sources have decreased (redder means larger drop). States that did not suffer a substantial relative decrease are shown in yellow. This geographical spread is likely correlated with market penetration of TWC connectivity within each state.

 

 

Further Improvements to the Internet Data Measurement Catalog (DatCat)

Tuesday, August 26th, 2014 by Josh Polterock

Internet researchers and metadata enthusiasts,

In response to feedback and guidance from contributors and users, we continue to refine the Internet Measurement Data Catalog (DatCat). To encourage additional contributions, we have streamlined the DatCat data model and minimized the number of required metadata fields. Specifically, we eliminated the Data and Package objects and merged their most important information into relevant Collections. We also made dozens of other little improvements all over the code base.

We invite folks to browse the catalog, create an account, and contribute some metadata to the catalog to help document the existence and availability of Internet measurement data.

Cheers.