Archive for the 'Security' Category

A First Look at Suspicious IRR Records

Thursday, February 15th, 2024 by Ben Du

The Internet Routing Registry (IRR) is a set of distributed databases used by networks to register routing policy information and to validate messages received in the Border Gateway Protocol (BGP). 

 

First deployed in the 1990s, the IRR remains the most widely used database for routing security purposes, despite the existence of more recent and more secure alternatives such as the Resource Public Key Infrastructure (RPKI). Yet, the IRR lacks a strict validation standard and the limited coordination across different database providers can lead to inaccuracies. Moreover, it has been reported that attackers have begun to register false records in the IRR to bypass operators’ defenses when launching attacks on the Internet routing system, such as BGP hijacks. 

 

In our paper, IRRegularities in the Internet Routing Registry, we at CAIDA/UC San Diego, in collaboration with Georgia Tech and Stanford, proposed a workflow to identify suspicious IRR records. In this post, we succinctly describe how we quantified the inconsistencies across all IRR databases, identified likely suspicious IRR records, and validated our results against relevant studies.

 

Reported false IRR records

 

Each IRR database is managed independently under different policies and registration processes. The five RIRs (RIPE, ARIN, APNIC, AFRINIC, and LACNIC) manage authoritative IRR databases. Routing information registered in those IRR databases undergoes a validation process against the address ownership information to ensure correctness. IRR databases operated by other institutions are non-authoritative IRR databases and are not strictly validated.

 

To increase the likelihood of launching a successful BGP hijack attack, malicious actors may inject false records into non-authoritative IRR databases. There have been reported cases of successful BGP hijacking attempts that also abused the IRR.

 

In one prominent case, an attacker successfully hijacked Amazon’s address space that was used to host Celer Network’s cryptocurrency exchange website. The attacker, AS209243 (QuickHost.uk), pretended to be an upstream provider of AS16509 (Amazon) by registering false objects in ALTDB. In a different case, AS207427 (GoHosted.eu) registered false IRR objects for 3 UCSD-announced prefixes and hijacked those prefixes in BGP for more than a month.

 

Workflow to identify suspicious IRR records

 

Following the diagram in Figure 1, we consider an IRR record in a non-authoritative database suspicious if it satisfies the following conditions:

  1. The IRR record conflicted with corresponding records (containing the same prefix but different origin) in the authoritative IRR database.
  2. The prefix in the IRR record from step 1 was originated in BGP by multiple ASes, one of which is the AS in the IRR record.

 

We validate our inferred suspicious IRR records with the Resource Public Key Infrastructure (RPKI), a more recent and secure alternative of the IRR. We also check if the origin ASes in the suspicious IRR records were classified as serial hijacker ASes by Testart et al. published at IMC 2019.

Figure 1. Workflow to identify suspicious IRR records (solid arrows) and methods to validate our results (dotted arrows).

 

Baseline: Inconsistency across IRR databases

 

We discuss the results of the first step in the workflow above. To understand the baseline characteristics of the IRR databases, we analyze the consistency between all pairs of IRR databases.

 

Figure 2 shows the percentage of records with the same prefix but different origin ASes between pairs of IRRs. We found that most IRR databases have mismatching records with one another, consistent with persistent neglect by IRR users and thus an increasing number of outdated entries. We also noticed instances where a company registered records in multiple IRR databases, but only updated the records in one IRR database, causing inter-IRR inconsistency. 

 

Most surprising were the mismatching records between pairs of authoritative IRR databases, since each RIR only allows registration of records containing address blocks managed by that RIR, which do not overlap with each other. We speculate that those mismatching records correspond to address space that was transferred across RIRs, and the address owner from the previous RIR did not remove the outdated object. As of January 2024, two months since our paper was published, the RIRs have removed all inconsistent IRR records in their authoritative databases. We provide the updated results on github https://github.com/CAIDA/IRR-IRRegularities-Analysis

Figure 2. Fraction of inconsistent records in the IRR on the Y-axis with respect to the IRR on the X-axis. The denominators shown in Figure 1b in the paper.

 

Suspicious records in RADB

 

Out of 1.5 million RADB records (1.2 million unique prefixes), we identified 34,199 potentially suspicious records. We further checked the RPKI consistency of those records. Out of those 34,199 records, 4,082 records had a mismatching ASN, 144 had prefixes that were too specific, and 9,450 had no matching ROA in RPKI. To further narrow down the list of suspicious IRR records, we removed the ones whose AS appear in other RPKI-consistent records (assuming those ASes were unlikely to be malicious), leaving 6,373 suspicious records. Network operators who use IRR-based filtering should carefully consider those suspicious records.

 

We also compared our list of 34,199 suspicious records with the list of serial hijackers from Testart et al.  and found 5,581 records registered by 168 serial hijacker ASes. We found one of those ASes to be a small US-based ISP with 10 customers according to CAIDA’s AS Rank. Another serial hijacker AS was a European hosting provider with more than 100 customers, which was also known to be exploited by attackers to abuse the DNS system. However, networks may have registered both suspicious and benign records, which can complicate the inference of suspicious IRR records.

 

Summary

We provided a first look at inconsistencies across IRR databases and proposed an approach to infer suspicious activities in the IRR without external sources of ground truth. We found IRR databases prone to staleness and errors, confirming the importance of operators transitioning to RPKI-based filtering. We hope this work inspires new directions in automating the detection of abuse of IRRs, ideally in time to prevent or thwart an attacker’s ultimate objective. We publicly provide our analysis code on Github https://github.com/CAIDA/IRR-IRRegularities-Analysis with more recent sample data and results.

CAIDA’s 2022 Annual Report

Monday, July 10th, 2023 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2022 in the areas of research, infrastructure, data collection and analysis. The executive summary is excerpted below:
(more…)

Studying Conformance of MANRS Members

Saturday, January 21st, 2023 by Ben Du

In November 2022, 85% MANRS members were conformant to Action #1 and Action #4.

 

The Mutually Agreed Norms on Routing Security (MANRS) initiative is an industry-led effort to improve Internet routing security. MANRS encourages participating networks to implement a series of routing security practices.  In our paper, Mind Your MANRS: Measuring the MANRS Routing Ecosystem, we at CAIDA (UC San Diego), in collaboration with Georgia Tech, and IIJ Research Lab, provided the first independent look into the MANRS ecosystem by using publicly available data to analyze the routing behavior of participant networks. MANRS membership has increased significantly in recent years, but our research goal was to get more clarity on the impact of the MANRS initiative on the state of overall Internet routing security.   In this post, we summarize how we characterized the growth of MANRS members, explain our process of analyzing ISP conformance with the MANRS practices we studied, compare RPKI ROA registration status between MANRS and non-MANRS members, and reflect on implications of our analysis for the future of MANRS. 

 

We first analyzed what types of networks have joined MANRS over time, and whether MANRS members are properly implementing the routing security practices (MANRS conformance).  The two practices (which MANRS calls actions) we focused on in our study are: 

  1. Participating ISPs will register their IP prefixes in a trusted routing database (either Resource Public Key Infrastructure (RPKI) or one of the databases of the Internet Routing Registry (IRR).   This practice is “MANRS Action #4”.
  2. Participating ISPs will use such information to prevent propagation of invalid routing information. This practice is “MANRS Action #1”.

 

Our paper analyzed the MANRS ecosystem in May 2022. Since MANRS is a growing community, for this post we have updated our analysis using data collected in November 2022 to capture a more recent view of the MANRS ecosystem. We have also published our analysis code here for interested readers to reproduce the analysis using the latest available data.

 

MANRS growth

We first downloaded a list of MANRS members. The Internet Society kindly provided us the dates when each MANRS participant joined the programs. We found that between 2015 and November 2022, 863 ASes joined MANRS. Over this 7-year period, an additional 12.1% of routed IPv4 address space was originated by MANRS ASes. Plotting growth by ASes and by address space (Figure 1) shows that most of these new ASes were based in the LACNIC region, but that those ASes originated little or no address space into BGP.   

(a)

(b)

Figure 1 – MANRS participation grew between 2015 and 2022, but the picture looks quite different if measured by number of ASes vs. % of routed address space. 

MANRS Conformance 

We examined whether MANRS (ISP and CDN) members properly implemented MANRS Action #4 and #1 according to the MANRS requirements:

  • To conform to Action #4, members must register at least 90% (100% for CDNs) IP prefixes in IRR or RPKI.
  • To conform to Action #1, members must filter out customer BGP announcements that do not match IRR or RPKI records.

 

We downloaded BGP prefixes and their IRR/RPKI status from the Internet Health Report (IHR) maintained by IIJ Research Labs. We found that in November 2022, 893 (95.9%) of all 931 MANRS ASes conformed to MANRS Action #4 (prefix registration). Figure 2 shows that in November 2022, 3.7% of the address space originated by MANRS ASes was contained in prefixes that either were not registered or were incorrectly registered in IRR or RPKI. We also conducted case studies of non-conformant MANRS CDN members  and found that one large CDN was not conformant because one of their 7000+ prefixes was RPKI-invalid. Please refer to section 8.4 of the paper for more details. 

 

(a)

 

(b)

Figure 2 – Most ASes participating in MANRS conformed with Action #4, and correspondingly, most of the address space those ASes originated into BGP was IRR or RPKI valid, i.e., had records that matched observed BGP announcements. 

 

To evaluate whether MANRS members filtered out customer BGP announcements that do not match IRR or RPKI records (Action #1), we downloaded BGP prefixes, their IRR and RPKI statuses, and their upstream ASes from the Internet Health Report. We then calculated the prevalence of IRR/RPKI Invalid prefixes propagated through each MANRS network. 

 

Figure 3 shows that in November 2022, 790 (84.9%) of 931 MANRS ASes conformed to the MANRS Action #1 . Figure 3 also shows that 141 (15.1%) MANRS ASes did not conform to Action #1. However, not all of the address space propagated by these ASes was incorrectly registered in RPKI or IRR.  In fact, those 141 ASes propagated 96.7% of the address space propagated by MANRS ASes, but only 1.5% of that total was incorrectly registered. In addition, we found that 25 out of 27 MANRS members that are large transit providers (i.e., had > 180 customer ASes) did not fully conform with MANRS Action #1, suggesting that conformance was hard to achieve for networks with complex routing relationships.

 

(a)

 

(b)

Figure 3 – MANRS ASes that did not conform to MANRS Action #1 only propagated a small fraction of address space announced by MANRS ASes that was not IRR or RPKI Valid. (b) shows 95.2% of MANRS-propagated address space was IRR/RPKI Valid despite being propagated by Action #1 non-conformant members.

 

Are MANRS members more likely to register in RPKI? 

Our study found that, except for a few cases, MANRS organizations tended to conform with the two actions we studied. However, to estimate the impact of the MANRS initiative on the state of routing security, we compared the behavior of MANRS and non-MANRS ASes. 

 

We first compared these two subsets of ASes in terms of registration of RPKI ROAs of prefixes announced in BGP.  In November 2022, 60.1% of routed IPv4 address space originated by MANRS ASes was covered by RPKI ROAs, compared with only 38.8% of all routed IPv4 addresses covered by ROAs. Figure 5 shows that in November 2022, IPv4 address space originated by MANRS ASes was more likely to be registered in RPKI in all RIR regions except APNIC. In the APNIC region, we found significant RPKI registration by non-MANRS networks from JPNIC and TWNIC, possibly due to local RPKI outreach efforts.  Overall, this difference suggests a positive influence of MANRS members on the adoption of RPKI. 

 

Similarly, changing the view from routed address space to the originating ASes, we found that in November 2022, MANRS members were more likely to originate at least 80% RPKI Valid prefixes in BGP compared to their non-MANRS counterparts in all RIR regions (Figure 6).

 

Figure 5 – In November 2022, IPv4 address space originated by MANRS ASes was more likely to be registered in RPKI in all RIR regions except APNIC.

 

Figure 6 – In November 2022, MANRS ASes were more likely to originate RPKI Valid prefixes than non-MANRS ASes.

 

Future for MANRS

In November 2022, we found 71 MANRS ASes that registered their prefixes only in IRR but not RPKI. Registering only in an IRR database is less optimal than registering in RPKI, since some IRR databases may contain inaccurate records due to looser validation standards (See our paper IRR Hygiene in the RPKI Era). We recommend that in the future, MANRS  members register in RPKI in addition to IRR databases.  We also recommend that MANRS add a conformance checker to its existing observatory to further motivate its members to maintain good routing security practices. We have published our analysis code to facilitate such conformance checking. 

CAIDA’s Annual Report for 2018

Tuesday, May 7th, 2019 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2018, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology, routing, security, economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem. The executive summary is excerpted below:
(more…)

CAIDA’s Annual Report for 2017

Tuesday, May 29th, 2018 by kc

The CAIDA annual report summarizes CAIDA’s activities for 2017, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology, routing, security, economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem. The executive summary is excerpted below:
(more…)

CAIDA’s 2016 Annual Report

Tuesday, May 9th, 2017 by kc

[Executive summary and link below]

The CAIDA annual report summarizes CAIDA’s activities for 2016, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology, routing, security, economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem. The executive summary is excerpted below:

Mapping the Internet. We continued to expand our topology mapping capabilities using our Ark measurement infrastructure. We improved the accuracy and sophistication of our topology annotations, including classification of ISPs, business relationships between them, and geographic mapping of interdomain links that implement these relationships. We released two Internet Topology Data Kits (ITDKs) incorporating these advances.

Mapping Interconnection Connectivity and Congestion. We continued our collaboration with MIT to map the rich mesh of interconnection in the Internet in order to study congestion induced by evolving peering and traffic management practices of CDNs and access ISPs. We focused our efforts on the challenge of detecting and localizing congestion to specific points in between networks. We developed new tools to scale measurements to a much wider set of available nodes. We also implemented a new database and graphing platform to allow us to interactively explore our topology and performance measurements. We produced related data collection and analyses to enable evaluation of these measurements in the larger context of the evolving ecosystem: infrastructure resiliency, economic tussles, and public policy.

Monitoring Global Internet Security and Stability. We conducted infrastructure research and development projects that focus on security and stability aspects of the global Internet. We developed continuous fine-grained monitoring capabilities establishing a baseline connectivity awareness against which to interpret observed changes due to network outages or route hijacks. We released (in beta form) a new operational prototype service that monitors the Internet, in near-real-time, and helps identify macroscopic Internet outages affecting the edge of the network.

CAIDA also developed new client tools for measuring IPv4 and IPv6 spoofing capabilities, along with services that provide reporting and allow users to opt-in or out of sharing the data publicly.

Future Internet Architectures. We continued studies of IPv4 and IPv6 paths in the Internet, including topological congruency, stability, and RTT performance. We examined the state of security policies in IPv6 networks, and collaborated to measure CGN deployment in U.S. broadband networks. We also continued our collaboration with researchers at several other universities to advance development of a new Internet architecture: Named Data Networking (NDN) and published a paper on the policy and social implications of an NDN-based Internet.

Public Policy. Acting as an Independent Measurement Expert, we posted our agreed-upon revised methodology for measurement methods and reporting requirements related to AT&T Inc. and DirecTV merger (MB Docket No. 14-90). We published our proposed method and a companion justification document. Inspired by this experience and a range of contradicting claims about interconnection performance, we introduced a new model describing measurements of interconnection links of access providers, and demonstrated how it can guide sound interpretation of interconnection-related measurements regardless of their source.

Infrastructure operations. It was an unprecedented year for CAIDA from an infrastructure development perspective. We continued support for our existing active and passive measurement infrastructure to provide visibility into global Internet behavior, and associated software tools and platforms that facilitate network research and operational assessments.

We made available several data services that have been years in the making: our prototype Internet Outage Detection and Analysis service, with several underlying components released as open source; the Periscope platform to unify and scale querying of thousands of looking glass nodes on the global Internet; our large-scale Internet topology query system (Henya); and our Spoofer system for measurement and analysis of source address validation across the global Internet. Unfortunately, due to continual network upgrades, we lost access to our 10GB backbone traffic monitoring infrastructure. Now we are considering approaches to acquire new monitors capable of packet capture on 100GB links.

As always, we engaged in a variety of tool development, and outreach activities, including maintaining web sites, publishing 13 peer-reviewed papers, 3 technical reports, 4 workshop reports, one (our first) BGP hackathon report, 31 presentations, 20 blog entries, and hosting 6 workshops (including the hackathon). This report summarizes the status of our activities; details about our research are available in papers, presentations, and interactive resources on our web sites. We also provide listings and links to software tools and data sets shared, and statistics reflecting their usage. Finally, we report on web site usage, personnel, and financial information, to provide the public a better idea of what CAIDA is and does.

For the full 2016 annual report, see http://www.caida.org/home/about/annualreports/2016/

Why IP source address spoofing is a problem and how you can help.

Friday, March 24th, 2017 by Bradley Huffaker

video: http://www.caida.org/publications/animations/security/spoofer-sav-intro
information: Software Systems for Surveying Spoofing Susceptibility
download: https://spoofer.caida.org/

This material is based on research sponsored by the Department of Homeland Security (DHS) Science and Technology Directorate, Homeland Security Advanced Research Projects Agency, Cyber Security Division (DHS S&T/HSARPA/CSD) BAA HSHQDC-14-R-B0005, and the Government of United Kingdom of Great Britain and Northern Ireland via contract number D15PC00188. Views should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Department of Homeland Security, the U.S. Government, or the Government of United Kingdom of Great Britain and Northern Ireland.

Help save the Internet: Install the new Spoofer client (v1.1.0)!

Sunday, December 18th, 2016 by Josh Polterock

The greatest security vulnerability of the Internet (TCP/IP) architecture is the lack of source address validation, i.e., any sender may put a fake source address in a packet, and the destination-based routing protocols that glue together the global Internet will get that packet to its intended destination. Attackers exploit this vulnerability by sending many (millions of) spoofed-source-address packets to services on the Internet they wish to disrupt (or take offline altogether). Attackers can further leverage intermediate servers to amplify such packets into even larger packets that will cause greater disruption for the same effort on the attacker’s part.

Although the IETF recommended best practices to mitigate this vulnerability by configuring routers to validate that source addresses in packets are legitimate, compliance with such practices (BCP38 and BCP84) are notoriously incentive-incompatible. That is, source address validation (SAV) can be a burden to a network who supports it, but its deployment by definition helps not that network but other networks who are thus protected from spoofed-source attacks from that network. Nonetheless, any network who does not deploy BCP38 is “part of the DDoS problem”.

Over the past several months, CAIDA, in collaboration with Matthew Luckie at the University of Waikato, has upgraded Rob Beverly’s original spoofing measurement system, developing new client tools for measuring IPv4 and IPv6 spoofing capabilities, along with services that provide reporting and allow users to opt-in or out of sharing the data publicly. To find out if your network provider(s), or any network you are visiting, implements filtering and allow IP spoofing, point your web browser at http://spoofer.caida.org/ and install our simple client.

This newly released spoofer v1.1.0 client has implemented parallel probing of targets, providing a 5x increase in speed to complete the test, relative to v.1.0. Among other changes, this new prober uses scamper instead of traceroute when possible, and has improved display of results. The installer for Microsoft Windows now configures Windows Firewall.

For more technical details about the problem of IP spoofing and our approach to measurement, reporting, notifications and remediation, see the slides from Matthew Luckie’s recent slideset, “Software Systems for Surveying Spoofing Susceptibility”, presented to the Australian Network Operators Group (AusNOG) in September 2016.

The project web page reports recently run tests from clients willing to share data publicly, test results classified by Autonomous System (AS) and by country, and a summary statistics of IP spoofing over time. We will enhance these reports over the coming months.

This material is based on research sponsored by the Department of Homeland Security (DHS) Science and Technology Directorate, Homeland Security Advanced Research Projects Agency, Cyber Security Division (DHS S&T/HSARPA/CSD) BAA HSHQDC-14-R-B0005, and the Government of United Kingdom of Great Britain and Northern Ireland via contract number D15PC00188. Views should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Department of Homeland Security, the U.S. Government, or the Government of United Kingdom of Great Britain and Northern Ireland.

CAIDA’s 2015 Annual Report

Tuesday, July 19th, 2016 by kc

[Executive summary and link below]

The CAIDA annual report summarizes CAIDA’s activities for 2015, in the areas of research, infrastructure, data collection and analysis. Our research projects span Internet topology, routing, security, economics, future Internet architectures, and policy. Our infrastructure, software development, and data sharing activities support measurement-based internet research, both at CAIDA and around the world, with focus on the health and integrity of the global Internet ecosystem. The executive summary is excerpted below:

Mapping the Internet. We continued to pursue Internet cartography, improving our IPv4 and IPv6 topology mapping capabilities using our expanding and extensible Ark measurement infrastructure. We improved the accuracy and sophistication of our topology annotation capabilities, including classification of ISPs and their business relationships. Using our evolving IP address alias resolution measurement system, we collected curated, and released another Internet Topology Data Kit (ITDK).

Mapping Interconnection Connectivity and Congestion.
We used the Ark infrastructure to support an ambitious collaboration with MIT to map the rich mesh of interconnection in the Internet, with a focus on congestion induced by evolving peering and traffic management practices of CDNs and access ISPs, including methods to detect and localize the congestion to specific points in networks. We undertook several studies to pursue different dimensions of this challenge: identification of interconnection borders from comprehensive measurements of the global Internet topology; identification of the actual physical location (facility) of an interconnection in specific circumstances; and mapping observed evidence of congestion at points of interconnection. We continued producing other related data collection and analysis to enable evaluation of these measurements in the larger context of the evolving ecosystem: quantifying a given ISP’s global routing footprint; classification of autonomous systems (ASes) according to business type; and mapping ASes to their owning organizations. In parallel, we examined the peering ecosystem from an economic perspective, exploring fundamental weaknesses and systemic problems of the currently deployed economic framework of Internet interconnection that will continue to cause peering disputes between ASes.

Monitoring Global Internet Security and Stability. We conduct other global monitoring projects, which focus on security and stability aspects of the global Internet: traffic interception events (hijacks), macroscopic outages, and network filtering of spoofed packets. Each of these projects leverages the existing Ark infrastructure, but each has also required the development of new measurement and data aggregation and analysis tools and infrastructure, now at various stages of development. We were tremendously excited to finally finish and release BGPstream, a software framework for processing large amounts of historical and live BGP measurement data. BGPstream serves as one of several data analysis components of our outage-detection monitoring infrastructure, a prototype of which was operating at the end of the year. We published four other papers that either use or leverage the results of internet scanning and other unsolicited traffic to infer macroscopic properties of the Internet.

Future Internet Architectures. The current TCP/IP architecture is showing its age, and the slow uptake of its ostensible upgrade, IPv6, has inspired NSF and other research funding agencies around the world to invest in research on entirely new Internet architectures. We continue to help launch this moonshot from several angles — routing, security, testbed, management — while also pursuing and publishing results of six empirical studies of IPv6 deployment and evolution.

Public Policy. Our final research thrust is public policy, an area that expanded in 2015, due to requests from policymakers for empirical research results or guidance to inform industry tussles and telecommunication policies. Most notably, the FCC and AT&T selected CAIDA to be the Independent Measurement Expert in the context of the AT&T/DirecTV merger, which turned out to be as much of a challenge as it was an honor. We also published three position papers each aimed at optimizing different public policy outcomes in the face of a rapidly evolving information and communication technology landscape. We contributed to the development of frameworks for ethical assessment of Internet measurement research methods.

Our infrastructure operations activities also grew this year. We continued to operate active and passive measurement infrastructure with visibility into global Internet behavior, and associated software tools that facilitate network research and security vulnerability analysis. In addition to BGPstream, we expanded our infrastructure activities to include a client-server system for allowing measurement of compliance with BCP38 (ingress filtering best practices) across government, research, and commercial networks, and analysis of resulting data in support of compliance efforts. Our 2014 efforts to expand our data sharing efforts by making older topology and some traffic data sets public have dramatically increased use of our data, reflected in our data sharing statistics. In addition, we were happy to help launch DHS’ new IMPACT data sharing initiative toward the end of the year.

Finally, as always, we engaged in a variety of tool development, and outreach activities, including maintaining web sites, publishing 27 peer-reviewed papers, 3 technical reports, 3 workshop reports, 33 presentations, 14 blog entries, and hosting 5 workshops. This report summarizes the status of our activities; details about our research are available in papers, presentations, and interactive resources on our web sites. We also provide listings and links to software tools and data sets shared, and statistics reflecting their usage. sources. Finally, we offer a “CAIDA in numbers” section: statistics on our performance, financial reporting, and supporting resources, including visiting scholars and students, and all funding sources.

For the full 2015 annual report, see http://www.caida.org/home/about/annualreports/2015/

1st CAIDA BGP Hackathon brings students and community experts together

Thursday, February 18th, 2016 by Josh Polterock

We set out to conduct a social experiment of sorts, to host a hackathon to hack streaming BGP data. We had no idea we would get such an enthusiastic reaction from the community and that we would reach capacity. We were pleasantly surprised at the response to our invitations when 25 experts came to interact with 50 researchers and practitioners (30 of whom were graduate students). We felt honored to have participants from 15 countries around the world and experts from companies such as Cisco, Comcast, Google, Facebook and NTT, who came to share their knowledge and to help guide and assist our challenge teams.

Having so many domain experts from so many institutions and companies with deep technical understanding of the BGP ecosystem together in one room greatly increased the kinetic potential for what we might accomplish over the course of our two days.

(more…)